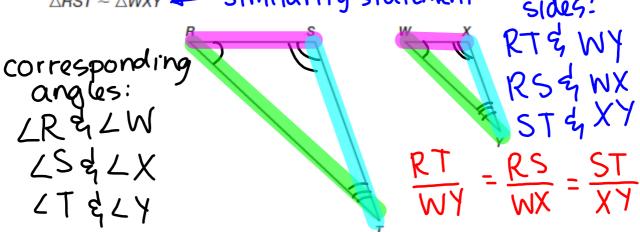
NO QUIZ TODAY!! Get out your Lesson 4.1 Skills Practice Worksheets and get them ready to turn in if you haven't turned them in already.

Similar Triangles or Not? Similar Triangle Theorems

PG.274 IN YOUR BOOK

In the previous lesson, you used transformations to prove that triangles are similar when their corresponding angles are congruent and their corresponding sides are proportional. In this problem, you will explore the similarity of two triangles using construction tools.


1. Identify all of the corresponding congruent angles and all of the corresponding proportional sides using the similar triangles shown.

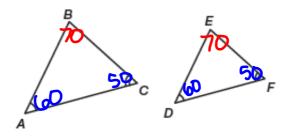
\(\triangle RST \similar \triangle WXY \)

\(\triangle Similar ity \)

Statement

\(\triangle \)

You can conclude that two triangles are similar if you are able to prove that all of their corresponding angles are congruent and all of their corresponding sides are proportional.


Ratio: 3, 2 to 3, 2:3

Proportion: 20r more ratios that are equal.

$$\frac{1}{a} = \frac{a}{4} = \frac{3}{6} = \frac{4}{8} = \frac{5}{10} = \cdots$$

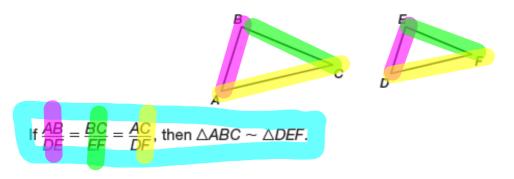
PG.275 IN YOUR BOOK

The **Angle-Angle Similarity Theorem** states: "If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar."



If $m \angle A = m \angle D$ and $m \angle C = m \angle F$, then $\triangle ABC \sim \triangle DEF$.

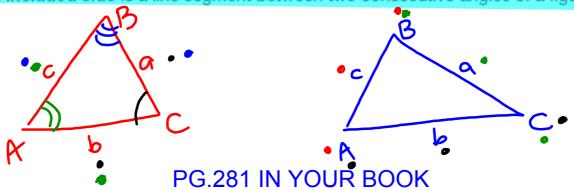
5. Explain why this similarity theorem is Angle-Angle instead of Angle-Angle-Angle.


If two angles in 2 triangles are congruent, the third angles must be congruent also.

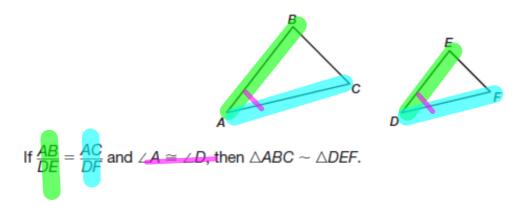
6. The triangles shown are isosceles triangles. Do you have enough information to show that the triangles are similar? Explain your reasoning.

PG.279 IN YOUR BOOK

The Side-Side Similarity Theorem states: "If all three corresponding sides of two triangles are proportional, then the triangles are similar."

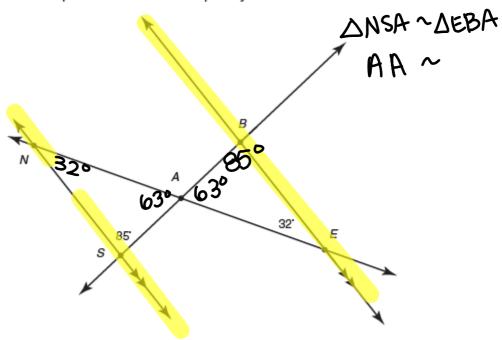

Stacy says that the Side-Side-Side Similarity Theorem tells us that two triangles can have proportional sides, but not congruent angles, and still be similar. Michael doesn't think that's right, but he can't explain why.

7. Is Stacy correct? If not, explain why not.
No, we have to have all 3 angles congruent
in order to have similar triangles.

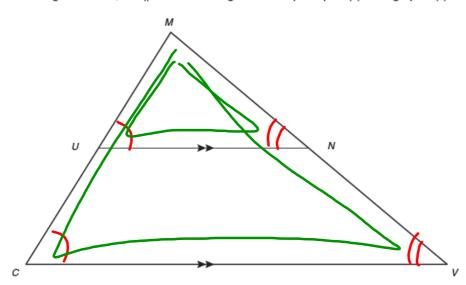

PG.280 IN YOUR BOOK

An included angle is an angle formed by two consecutive sides of a figure.

An included side is a line segment between two consecutive angles of a figure.



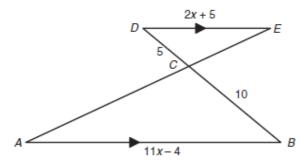
The Side-Angle-Side Similarity Theorem states: "If two of the corresponding sides of two triangles are proportional and the included angles are congruent, then the triangles are similar."


NOT IN YOUR BOOK, WRITE IN YOUR NOTES

1. In the figure below, $\overrightarrow{NS} \parallel \overrightarrow{BE}$. Use the information given in the figure to determine the $m \angle SNA$, $m \angle NAS$, $m \angle ABE$, and $m \angle BAE$. Is $\triangle NSA$ similar to $\triangle EBA$? If the triangles are similar, write a similarity statement. Use complete sentences to explain your answers.

NOT IN YOUR BOOK, WRITE IN NOTES

3. In the figure shown, $\overline{NU} \parallel \overline{CV}$. Use the figure to complete part (a) through part (c).



a. Is $\angle MUN \cong \angle MCV$? Explain your answer.

b. Is $\angle MNU \cong \angle MVC$? Explain your answer. c. Is $\triangle CMV \sim \triangle UMN$? Explain your answer.

NOT IN YOUR BOOK, WRITE IN NOTES

4. In the figure shown, segments AB and DE are parallel. The length of segment BC is 10 units and the length of segment CD is 5 units. Use this information to calculate the value of x. Explain how you determined your answer.

Homework Finish 4.2