Questions on Special Right

Triangles?

We will be taking our content

mastery quiz soon!

Big and Small

Dilating Triangles to Create Similar Triangles

ord with

NOT IN YOUR BOOK, WRITE IN YOUR NOTES

A dilation is a transformation that produces an image that is the same shape as the original, but is a different size. A dilation stretches or shrinks the original figure. The description of a dilation includes the scale factor (or ratio) and the center of the dilation.

1 image * start with*

PG.266 IN YOUR BOOK

You can use your sempass and a straightedge to perform a dilation. Consider $\triangle GHJ$ shown on the coordinate plane. You will dilate the triangle by using the origin as the center and by using a scale factor of 2.

1. How will the distance from the center of dilation to a point on the image of $\triangle G'H'J'$ compare to the distance from the center of dilation to a corresponding point on $\triangle GHJ$? Explain your reasoning.

- For each vertex of △GHJ, draw a ray that starts at the origin and passes through the vertex.
- 3. Use the duplicate segment construction to locate the vertices of $\triangle G'H'J'$.
- 4. List the coordinates of the vertices of △GHJ and △G'H'J'. How do the coordinates of the image compare to the coordinates of the pre-image?

$$G(3,3)$$
 $G'(6.6)$
 $H(3,7) \rightarrow 2$ $H'(6.14)$
 $T(7,3)$ $T'(14.6)$

PG.267 IN YOUR BOOK

5. Triangle J'K'L' is a dilation of $\triangle JKL$. The center of dilation is the origin.

1/K'L 1mag K'(4.3) J'(5.2) L'(6.5)

a. List the coordinates of the vertices of $\triangle JKL$ and $\triangle J'K'L'$. How do the coordinates of the image compare to the coordinates of the pre-image?

image coordinates are 1/2 the pre-image coordinates

- b. What is the scale factor of the dilation? Explain your reasoning.

 | because = by 2 is the same as by = 2
- c. How do you think you can use the scale factor to determine the coordinates of the vertices of an image?
- Use coordinate notation to describe the dilation of point (x, y) when the center of dilation is at the origin using a scale factor of k.

The point (x,y) is described as (kx,ky), using coordinate notation

NOT IN YOUR BOOK

- 1. Use quadrilateral ABCD shown on the grid to complete part (a) through part (c).
 - a. On the grid, draw the image of quadrilateral ABCD dilated using a scale factor of 3 with the center of dilation at the origin. Label the image JKLM.

$$A \rightarrow T (6.8)$$

$$C \rightarrow L(18.18)$$

$$D \rightarrow M(18.6)$$

b. On the grid, draw the image of quadrilateral ABCD dilated using a scale factor of 0.5 with the center of dilation at the origin. Label the image WXYZ.

c. Identify the coordinates of the vertices of quadrilaterals JKLM and WXYZ.

NOT IN YOUR BOOK

- 2. The vertices of triangle ABC are A(-6, 15), B(0, 5), and C(3, 10). Without drawing the figure, determine the coordinates of the vertices of the image of triangle ABC dilated using a scale factor of $\frac{1}{3}$ with the center of dilation at the origin. Explain your reasoning.
- 3. The vertices of trapezoid WXYZ are W(-1, 2), X(-3, -1), Y(5, -1), and Z(3, 2). Without drawing the figure, determine the coordinates of the vertices of the image of trapezoid WXYZ dilated using a scale factor of 5 with the center of dilation at the origin. Explain your reasoning.
- Triangle A'B'C' is a dilation of △ABC with the center of dilation at the origin. List the coordinates of the vertices of △ABC and △A'B'C'. What is the scale factor of the dilation? Explain.

On the grid, draw the image of quadrilateral QRST using the dilation (x, y) → (0.75x, 0.75y). Label the image Q'R'S'T'.

NOT IN YOUR BOOK, WRITE IN NOTES!

Similar figures are figures that are be projute formed by taking the original figure, called the pre-image, and performing a series of transformations (rotations, translations, dilations) to get a new figure, called the image.

Similar figures have the same shape, but can have different sizes.

Homework Finish 4.1