Questions on lesson 2.1 so far?

Look over Lesson 2.1's homework,

we will be taking our content

mastery quiz soon!

2.1

A Little Dash of Logic Foundations for Proof

DAY 2

PG.128 IN YOUR BOOK

PROBLEM 5 You Can't Handle the Truth Value

A **conditional statement** is a statement that can be written in the form "If p, then q." This form is the **propositional form** of a conditional statement. It can also be written using symbols as $p \to q$, which is read as "p implies q." The variables p and q are **propositional variables**. The **hypothesis** of a conditional statement is the variable p. The **conclusion** of a conditional statement is the variable q.

The **truth value** of a conditional statement is whether the statement is true or false. If a conditional statement could be true, then the truth value of the statement is considered true. The truth value of a conditional statement is either true or false, but not both.

Consider the conditional statement: If the measure of an angle is 32°, then the angle is acute.

- 1. What is the hypothesis p?
- 2. What is the conclusion q?

PG.128 IN YOUR BOOK

- 3. If p is true and q is true, then the truth value of a conditional statement is true.
 - a. What does the phrase "If p is true" mean in terms of the conditional statement?

that the hypothesis is true; it actually

b. What does the phrase "If q is true" mean in terms of the conditional statement?

That the hypothesis happened and so did the

c. Explain why the truth value of the conditional statement is true if both p and q are true.

If both p ag are true, then what we've said

In the conditional statement is true (we haven't lied).

TAKE 5 MINS TO WORK ON PG.129

PG.130 IN YOUR BOOK

A truth table is a table that summarizes all possible truth values for a conditional statement $p \to q$. The first two columns of a truth table represent all possible truth values for the propositional variables p and q. The last column represents the truth value of the conditional statement $p \to q$.

The truth values for the conditional statement "If the measure of an angle is 32°, then the angle is acute" is shown.

7. Consider the conditional statement: If $\overline{MAB} = 6$ inches and $\overline{MBC} = 6$ inches, then

 $\overline{AB} \cong \overline{BC}$. Corclusion a. What is the hypothesis p?

b. What is the conclusion *q*?

c. If both p and q are true, what does that mean? What is the truth value of the conditional statement if both p and q are true?

PG.132 IN YOUR BOOK

PROBLEM 6 Rewriting Conditional Statements

For each conditional statement, draw a diagram and then write the hypothesis as the "Given" and the conclusion as the "Prove."

1. If BD bisects PABC, then ABD = ABC Given: BD bisects ABC Prove: ABD = ACBD

And Now From a New Angle

Special Angles and Postulates

PG. 136-7 IN YOUR BOOK

Two angles are **supplementary angles** if the sum of their angle measures is equal

to 180°.

Two angles are complementary angles if the sum of their angle measures is equal to 90°.

PG. 139 IN YOUR BOOK

You have learned that angles can be supplementary or complementary. Let's explore other angle relationships.

PG. 142 IN YOUR BOOK

PG. 144 IN YOUR BOOK

8. Identify each of the following in the figure.

NOT IN YOUR BOOK

a. Name two pairs of complementary angles.

c. Name four pairs of angles that form linear pairs.

LAGB & LBGE

b. Name six pairs of supplementary angles.

LEGDELDGB

d. Name two pairs of vertical angles.

LFGE& LBGC

PG. 146 IN YOUR BOOK

4. Determine *m*∠*AED*. Explain how you determined the angle measure.

PG. 148 IN YOUR BOOK

A **postulate** is a statement that is accepted without proof.

A **theorem** is a statement that can be proven.

The Elements is a book written by the Greek mathematician Euclid. He used a small number of undefined terms and postulates to systematically prove many theorems. As a result, Euclid was able to develop a complete system we now know as Euclidean geometry.

For each of these postulates, sketch a picture in your text, that is a question for your homework

PG. 150 IN YOUR BOOK

The Linear Pair Postulate states: "If two angles form a linear pair, then the angles are supplementary."

PG. 151 IN YOUR BOOK

The **Segment Addition Postulate** states: "If point *B* is on \overline{AC} and between points *A* and *C*, then AB + BC = AC."

PG. 152 IN YOUR BOOK

The Angle Addition Postulate states: "If point D lies in the interior of $\angle ABC$, then $m\angle ABD + m\angle DBC = m\angle ABC$."

Homework

Finish lesson 2.1 & 2.2