(0

Get yourselves ready for our test! We will take 15-20 minutes to review and then start our test.

*Doc \Rightarrow RAD (\times) \times 1.09861 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 2 \times 2 \times 3 \times 4 \times 2 \times 3 \times 4 \times 4 \times 4 \times 4 \times 5 \times 5 \times 6 \times 6 \times 6 \times 6 \times 6 \times 6 \times 7 \times 7 \times 8 \times 9 \times

AP CALCULUS AB Unit 3A Review Derivatives

No calculator may be used to solve the following problems.

- 1. If $g(x) = \frac{1}{32}x^4 5x^2$, find g'(4).
- (A) -72
- (B) -32
- (C) -24
- (D) 24
- (E) 32

- 2. A particle moves along the *x*-axis so that at any time $t \ge 0$ its position is given by $x(t) = t^3 3t^2 9t + 1$. For what values of t is the particle at rest?
- (A) No values
- (B) 1 only
- (C) 3 only
- (D) 5 only
- (E) 1 and 3

3. The graph of the function f shown in the figure has a horizontal tangent at the point (-1, -3) and a cusp at (2, 0). For what values of x, -5 < x < 5, is f not differentiable?

- (A) 0 only
- (B) 0 and 2 only
- (C) −1 and 0 only

- (D) -1, 0, and 2
- (E) -1 and 2 only

- 4. If $y = \frac{2x+3}{3x+2}$, then $\frac{dy}{dx} =$
- (A) $\frac{12x+13}{(3x+2)^2}$ (B) $\frac{12x-13}{(3x+2)^2}$ (C) $\frac{5}{(3x+2)^2}$ (D) $\frac{-5}{(3x+2)^2}$ (E) $\frac{2}{3}$

- 5. What is the instantaneous rate of change at t = -1 of the function f if $f(t) = \frac{t^3 + t}{4t + 1}$?
- (A) $\frac{12}{9}$
- (B) $\frac{4}{Q}$ (C) $-\frac{20}{Q}$ (D) $-\frac{4}{Q}$ (E) $-\frac{12}{Q}$
- 6. The graph of f is shown in the figure below. Which of the following could be the graph of the derivative of f?

(A)

(B)

(C)

(D)

7. Let $f(x) = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$. For what value of x does f(x) = 4?

- (A) -2 (B) -1 (C) 1 (D) 2

- (E) 4

A graphing calculator may be used for the following problems.

8. Let f be the function given by $f(x) = 3^x$. For what value of x is the slope of the line tangent to the curve at (x, f(x)) equal to 1?

- (A) 1.099

- (B) 0.086 (C) 0 (D) -0.086 (E) -1.099

9. An equation of the line tangent to the graph of $y = 3x - \cos x$ at x = 0 is

- (A) y = 2x (B) y = 2x 1 (C) y = 3x + 1 (D) y = 3x 1 (E) y = 4x

10. Which of the following is an equation of the line tangent to the graph of $f(x) = x^6 - x^4$ at the point

(E)
$$y = -x + 1.031$$
 $f(-0.934) = (0.934)^6 - (-0.934)^6$

US:
$$(-0.934, 0.097)$$
 f (-0.934) = -0.097
 4 f'(x)=-1
 $y + 10.097 = -1(x+0.934)$
 $y = -x - 0.934 - 0.097$
ERESPONSE - No calculator is allowed

FREE RESPONSE - No calculator is allowed

Let f be the function given by $f(x) = 4 \sin x$. As shown, the graph of f passes through the point $M(\pi/2, 4)$ and crosses the x-axis at point $N(\pi, 0)$.

(A) Write an equation for the line passing through points M and N.

$$M = \frac{4-0}{15-11} = \frac{4}{-5} = -\frac{8}{11}$$

$$y = \frac{4}{-5} = -\frac{8}{11}$$

$$y = \frac{4}{-5} = -\frac{8}{11}$$

$$y = \frac{4}{-5} = -\frac{8}{11}$$

Write an equation for the line tangent to the graph of f at N. Show the analysis that leads to your equation.

$$f(x) = 4\sin x$$
 $y-y_1=m(x-x)y-0=-4(x-\pi)$
 $f'(x) = 4\cos x$ $y=m(x-x)+y$ $y=-4x+4\pi$
 $f'(\pi) = 4\cos \pi$
 $f'(\pi) = 4-1$
 $f'(\pi) = 4-1$

Homework

Unit 3A Review