What questions do you have on your "Solving Quadratics by Factoring" worksheet?

To complete the square, your quadratic must be in Standard

Form, $ax^2 + bx + c = 0$. Here are your steps when a = 1:

- (1) move c to the right side of the equals sign.
- (2) add $(b/2)^2$ to both sides
- (3) factor the left side of the equals sign and move c back to the left.

~You will end up in Vertex Form, $f(x) = a(x-h)^2+k$, with your vertex at (h,k).

From your worksheet.

Solve each equation by completing the square.

1)
$$p^{2} + 20p - 1 = 0$$

$$p^{2} + 20p + 100 = 1 + 100$$

$$p^{2} + 20p + 100 = 101$$

$$(p + 10)^{2} = 101$$

$$(p + 10)^{2} - 101 = 0$$
7) $x^{2} - 14x - 34 = 5$

$$x^{2} - 14x + 49 = 39 + 49$$

$$x^{2} - 14x + 49 = 88$$

$$(x - 7)^{2} - 88 = 0$$

To complete the square, your quadratic must be in Standard

Form, $ax^2 + bx + c = 0$. There are only a couple of things that change when $a \neq 1$.

~You must factor a out of every terms after moving c to

~When you add $(b/2)^2$ to both sides, you must multiply the right side by the a you factored out.

Solve each equation by completing the square.

9)
$$2m^{2} - 8m - 10 = 0$$

 $2m^{2} - 8m = 10$
 $2(m^{2} - 4m + 4) = 10 + 8$
 $2(m-2)^{2} = 18$
 $3(m-2)^{2} - 10 = 0$
13) $5r^{2} - 20r - 73 = -9$
 $+73 + 73$
 $5r^{2} - 20r = 64$
 $5(r^{2} - 4r + 4) = 64 + 20$
 $5(r-2)^{2} = 84$
 $5(r-2)^{2} - 84 = 0$
 $5(r-2)(r-2)$

Homework

Solving Quadratics by Completing the Square WKS