No Quiz-work on these problems as a starter.

Find the inverse of each function algebraically:

1)
$$g(n) = 2 + n^5$$
 2) $g(x) = -\frac{2}{x+3} - 2$ 3) $g(n) = \frac{3n-12}{4}$ 4) $g(x) = -2x^3 + 1$
 $g^{-1}(n) = \sqrt[4]{n-2}$ $g^{-1}(x) = \frac{-2}{x+2} - 3$ $g^{-1}(n) = \frac{4x+12}{3}$ $g^{-1}(x) = \sqrt[4]{x-1}$

5) $g(x) = -2x - 8$ 6) $g(x) = -x - 3$ 7) $y = \log_4(x-4)$ 2x $y = \log_x 4 + 6$
 $g^{-1}(x) = \frac{x+8}{-2}$ $g^{-1}(x) = -(x+3)$ $f^{-1}(x) = 4^x + 4$

19) $y = 6^x - 7$ 18) $y = \frac{10^x}{3}$
 $f^{-1}(x) = \log_4(x+7)$ 100 (3x)

1.3 HW will be checked off today.

(a)
$$x = \frac{-2}{y+3} - 2$$
(b) $x = -y - 3$
(c) $x = -y - 3$
(d) $x = -y - 4$
(e) $x = -y - 4$
(e) $x = -y - 4$
(for $y = -y - 4$
(for y

3/x-1 = y=f-1(x)

SM3H Summary

Topic & Lesson: Module | - Functions & Their Inverses

Vocabulary:

- · logarithm (y= logax -> ay=x)
- Inverse functions $[f^{-1}(x)]$ -"undo" the function
- · functions [f(x)]

Key Concepts/Important Topics:

· Linear functions have linear inverses with reciprocal slopes.

Quadratic functions only have inverses that are functions if we restrict the domain (take 1/2 parabolis

• Exponential functions have logarithmic inverses with the same base $(f(x)=2^x - f^{-1}(x)=\log_2 x)$

· domain & range switch; x- &y-axes switch; points switch (x,y) -> (y,x)

·functions of their inverses are reflections across

- When you take the composition of f(x) &f-1(x) and Simplify, you are left with only x.
- solve algebraically switch x & y & solve for y.

1.5 Inverse Universe

A Practice Understanding Task

You and your partner have each been given a different set of cards. The instructions are:

- 1. Select a card and show it to your partner.
- Work together to find a card in your partner's set of cards that represents the inverse of the function represented on your card.

*For this task only, assume that all tables represent points on a continuous function.

	Justification of inverse relationship:
Pair 2:	Justification of inverse relationship:
Pair 3:	Justification of inverse relationship:
Pair 4:	Justification of inverse relationship:

@ 2012 www flishs som lahatas Idas

Pair 5:	Justification of inverse relationship:
Pair 6:	Justification of inverse relationship:
Pair 6:	Justic Company of Pelationship:
Pair 7:	Justification of inverse relationship:
	Justification of inverse relationship:
Pair 9:	Justification of inverse relationship:
Pair 10:	Justification of inverse relationship:

Answers

Homework/Classwork

Finish 1.5

#8
$$x = (\log_{3}4 + 6)$$
 $x - 6 = \log_{3}4$
 $x - 6 = \log_{4}4$
 $x - 6 = \log_{4}4$
 $(\log_{3}y - \log_{4}4)$
 $(\log_{3}y - \log_{4}4)$
 $(\log_{3}y - \log_{4}4)$
 $(\log_{4}y - \log_{4}4)$
 $(\log_{4}y - \log_{4}4)$