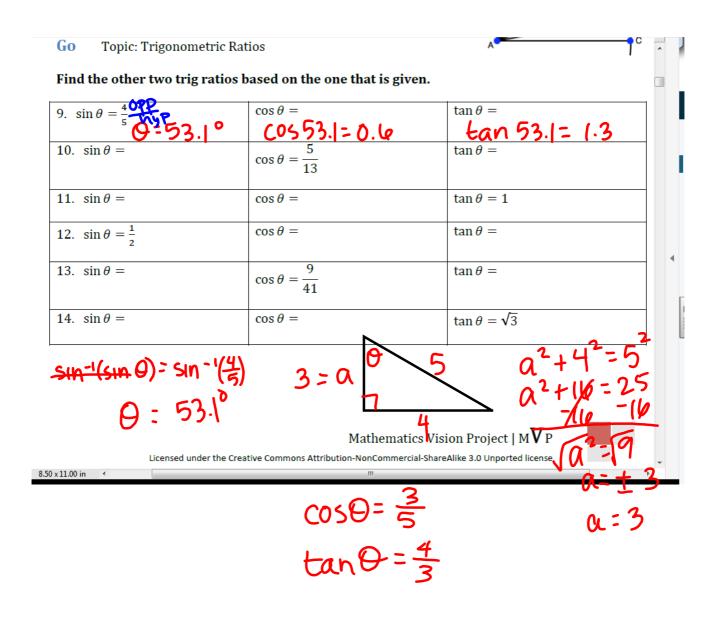

Get out a piece of paper and write down everything you remember about functions and their inverses.

*Also get out your 6.1 packet, we'll go over any questions you have on that too!

Inverse Functions

- Solve for a function's inverse: (1) switch x dy; (2) solve for y.
- domain & range switch $\rightarrow (x_1y) \rightarrow (y_1x)$ $(2,3) \rightarrow (3,2)$
- A quadratic functions Inverse is not a function unless we restrict the domain.


- A function dits inverse are reflections across y=x Hang Onto:

- Chapter Summaries from textbook

- Module 4, 1, 2, 6.1

Other Important items:

SAGE Mon 4/25 & Wed 4/27

How do you find the inverse of a function algebraically?

Find the inverse of each function.

$$g(x) = \frac{2}{3}x + 2$$

$$f(x) = (x+2)^5 + 1$$

$$g(x) = \frac{3}{-x-1}$$

$$y = -10\log_4 x$$

$$y = \frac{2^x}{2}$$

$$y = 6^x + 5$$

Given two functions, how can you tell if they're inverses of one another?

State if the given functions are inverses.

$$g(x) = \sqrt[5]{-x-1}$$

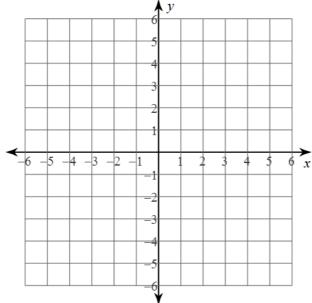
$$f(x) \neq -x^5 - 1$$

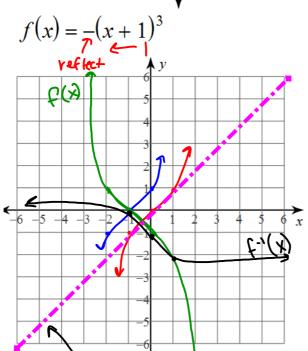
$$f(g(x)) = f(\sqrt[5]{-x-1}) = -(\sqrt[5]{-x-1}) = -(-x-1) - 1 = x$$

$$-(\sqrt[5]{-x-1}) - 1 = x$$

$$g(f(x)) = g(-x^5 - 1) = x$$

$$\sqrt[5]{-(-x^5 - 1) - 1} = x$$


$$\sqrt[5]{x^5 + 1 - 1}$$


$$h(x) = -\frac{3}{x+3} - 2$$
$$f(x) = \frac{4}{x-3} + 1$$

What are some important features of graphing a function and its inverse?

Find the inverse of each function. Then graph the function and its inverse. Graph the line y=x with a dotted line.

$$g(n) = \frac{1}{4}n - \frac{1}{4}$$

$$X = -(y+1)^3$$
 $(y+1)^3$

$$\sqrt[3]{-x} = y + 1$$
 $\sqrt[3]{-x} - 1 = f^{-1}(x)$

reflect
 $\sqrt[3]{-x} + \sqrt[3]{x} + \sqrt[3]{x}$

Homework

Finish Inverse Functions Review WKS