\qquad

AP CALCULUS AB
 Unit 3A Review
 Derivatives

No calculator may be used to solve the following problems.

1. If $g(x)=\frac{1}{32} x^{4}-5 x^{2}$, find $g^{\prime}(4)$.
(A) -72
(B) -32
(C) -24
(D) 24
(E) 32
2. . A particle moves along the x-axis so that at any time $t \geq 0$ its position is given by $x(t)=t^{3}-3 t^{2}-9 t+1$. For what values of t is the particle at rest?
(A) No values
(B) 1 only
(C) 3 only
(D) 5 only
(E) 1 and 3
3. The graph of the function f shown in the figure has a horizontal tangent at the point $(-1,-3)$ and a cusp at $(2,0)$. For what values of $x,-5<x<5$, is f not differentiable?

($\bar{A}) 0$ only
(B) 0 and 2 only
(C) -1 and 0 only
(D) $-1,0$, and 2
(E) - 1 and 2 only
4. If $y=\frac{2 x+3}{3 x+2}$, then $\frac{d y}{d x}=$
(A) $\frac{12 x+13}{(3 x+2)^{2}}$
(B) $\frac{12 x-13}{(3 x+2)^{2}}$
(C) $\frac{5}{(3 x+2)^{2}}$
(D) $\frac{-5}{(3 x+2)^{2}}$
(E) $\frac{2}{3}$
5. What is the instantaneous rate of change at $t=-1$ of the function f if $f(t)=\frac{t^{3}+t}{4 t+1}$?
(A) $\frac{12}{9}$
(B) $\frac{4}{9}$
(C) $-\frac{20}{9}$
(D) $-\frac{4}{9}$
(E) $-\frac{12}{9}$
6. The graph of f is shown in the figure below. Which of the following could be the graph of the derivative of f ?

(A)

(B)

(C)

(D)

(E)

7. Let $f(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$. For what value of x does $f(x)=4$?
(A) -2
(B) -1
(C) 1
(D) 2
(E) 4

A graphing calculator may be used for the following problems.

8. Let f be the function given by $f(x)=3^{x}$. For what value of x is the slope of the line tangent to the curve at $(x, f(x))$ equal to 1 ?
(A) 1.099
(B) 0.086
(C) 0
(D) -0.086
(E) -1.099
9. An equation of the line tangent to the graph of $y=3 x-\cos x$ at $x=0$ is
(A) $y=2 x$
(B) $y=2 x-1$
(C) $y=3 x+1$
(D) $y=3 x-1$
(E) $y=4 x$
10. Which of the following is an equation of the line tangent to the graph of $f(x)=x^{6}-x^{4}$ at the point where $f^{\prime}(x)=-1$?
(A) $y=-x-1.031$
(B) $y=-x-0.836$
(C) $y=-x+0.836$
(D) $y=-x+0.934$
(E) $y=-x+1.031$

FREE RESPONSE - No calculator is allowed

11. Let f be the function given by $f(x)=4 \sin x$. As shown, the graph of f passes through the point $M(\pi / 2,4)$ and crosses the x-axis at point $N(\pi, 0)$.

(A) Write an equation for the line passing through points M and N.
(B) Write an equation for the line tangent to the graph of f at point N. Show the analysis that leads to your equation.
