AP CALCULUS AB Unit 7 Review Differential Equations and Mathematical Modeling

No calculator may be used on the following problems.

1. $\int_{-1}^{1} \frac{4}{1+x^2} dx =$				
(A) 0	(B) π	(C) 1	(D) 2π	(E) 2

2.
$$\int x\sqrt{5x^2 - 4} \, dx =$$

(A) $\frac{1}{10}(5x^2 - 4)^{\frac{3}{2}} + C$
(B) $\frac{1}{15}(5x^2 - 4)^{\frac{3}{2}} + C$
(C) $-\frac{1}{5}(5x^2 - 4)^{-\frac{1}{2}} + C$
(D) $\frac{20}{3}(5x^2 - 4)^{\frac{3}{2}} + C$
(E) $\frac{3}{20}(5x^2 - 4)^{\frac{3}{2}} + C$

3. The average value of the function $f(x) = (x - 1)^2$ on the interval from x = 1 to x = 5 is

(A)
$$-\frac{16}{3}$$
 (B) $\frac{16}{3}$ (C) $\frac{64}{3}$ (D) $\frac{66}{3}$ (E) $\frac{256}{3}$

4. If $\frac{dy}{dx} = \frac{(3x^2 + 2)}{y}$ and y = 4 when x = 2, then when x = 3, y =(A) 18 (B) $\sqrt{66}$ (C) 58 (D) $\sqrt{74}$ (E) $\sqrt{58}$

5.
$$\int \frac{dx}{9+x^2} =$$
(A) $3\tan^{-1}\left(\frac{x}{3}\right) + C$
(B) $\frac{1}{3}\tan^{-1}\left(\frac{x}{3}\right) + C$
(C) $\frac{1}{9}\tan^{-1}\left(\frac{x}{3}\right) + C$
(D) $\frac{1}{3}\tan^{-1}(x) + C$
(E) $\frac{1}{9}\tan^{-1}(x) + C$

6.
$$\int_{0}^{\frac{1}{2}} \frac{2}{\sqrt{1-x^{2}}} dx =$$

(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{3}$ (C) $-\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$ (E) $-\frac{2\pi}{3}$

7.
$$\int x\sqrt{x+3} \, dx =$$

(A) $\frac{2}{3}(x)^{\frac{3}{2}} + 6(x)^{\frac{1}{2}} + C$
(B) $\frac{2(x+3)^{\frac{3}{2}}}{3} + C$
(C) $\frac{2}{5}(x+3)^{\frac{5}{2}} - 2(x+3)^{\frac{3}{2}} + C$
(D) $\frac{3(x+3)^{\frac{3}{2}}}{2} + C$
(E) $\frac{4x^{2}(x+3)^{\frac{3}{2}}}{3} + C$

A graphing calculator may be used on the following problems.

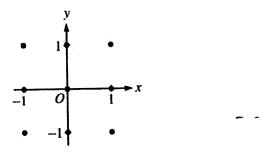
8.
$$\int_{0}^{\frac{\pi}{4}} \sin x \, dx + \int_{-\frac{\pi}{4}}^{0} \cos x \, dx =$$

(A) $-\sqrt{2}$ (B) -1 (C) 0 (D) 1 (E) $\sqrt{2}$

9.
$$\int \tan^6 x \sec^2 x \, dx =$$

(A)
$$\frac{\tan^7 x}{7} + C$$

(B) $\frac{\tan^7 x}{7} + \frac{\sec^3 x}{3} + C$
(C) $\frac{\tan^7 x \sec^3 x}{21} + C$
(D) $7 \tan^7 x + C$
(E) $\frac{2}{7} \tan^7 x \sec x + C$


10.
$$\int \frac{\ln x}{3x} dx =$$
(A) $6 \ln^2 |x| + C$
(B) $\frac{1}{6} \ln(\ln |x|) + C$
(C) $\frac{1}{3} \ln^2 |x| + C$
(D) $\frac{1}{6} \ln^2 |x| + C$
(E) $\frac{1}{3} \ln |x| + C$

No calculator may be used on the following problem.

11.

Consider the differential equation $\frac{dy}{dx} = (y-1)^2 \cos(\pi x)$.

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.
 (Note: Use the axes provided in the exam booklet.)

- (b) There is a horizontal line with equation y = c that satisfies this differential equation. Find the value of c.
- (c) Find the particular solution y = f(x) to the differential equation with the initial condition f(1) = 0.