
AP CALCULUS AB Unit 6 Review Definite Integrals

No calculator may be used on the following problems.

- The average value of $f(x) = \frac{1}{x}$ from x = 1 to x = e is 1.
 - (A) $\frac{1}{e+1}$
 - (B) $\frac{1}{1-e}$
 - (C) e-1
 - (D) $1 \frac{1}{e^2}$

2.

The graph of a piecewise linear function f, for $0 \le x \le 8$, is shown above. What is the value of $\int_{0}^{\infty} f(x) dx$?

(A) 1

(B) 4

- (C) 8
- (D) 10
- (E) 13

3.
$$\int_{2}^{3} \frac{1}{x^{3}} dx =$$

- (A) $-\frac{5}{72}$ (B) $-\frac{5}{36}$ (C) $\frac{5}{144}$
- (D) $\frac{5}{72}$
- (E) $\ln \frac{27}{8}$

4. If f is continuous for $a \le x \le b$, then at any point x = c, where a < c < b, which of the following must be true?

(A)
$$f(c) = \frac{f(b) - f(a)}{b - a}$$

(B)
$$f(a) = f(b)$$

(C)
$$f(c) = 0$$

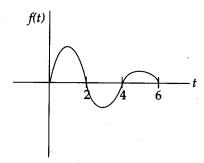
(D)
$$\int_{a}^{b} f(x) dx = f(c)$$

(E)
$$\lim_{x\to c} f(x) = f(c)$$

5. The average value of $\sec^2 x$ on the interval $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ is

(A)
$$\frac{8}{\pi}$$

(B)
$$\frac{12\sqrt{3}-12}{\pi}$$

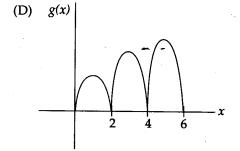

(C)
$$\frac{12-4\sqrt{3}}{\pi}$$

$$D) \frac{6\sqrt{2}-6}{\pi}$$

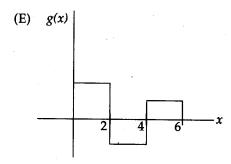
E)
$$\frac{6-6\sqrt{2}}{\pi}$$

A graphing calculator may be used for the following problems.

- 6. What is the trapezoidal approximation of $\int_{0}^{3} e^{x} dx$ using n = 4 subintervals?
 - (A) 6.407
- (B) 13.565
- (C) 19.972
- (D) 27.879
- (E) 34.944



Let $g(x) = \int_{0}^{x} f(t) dt$, where f(t) has the graph shown above. Which of the following could be the graph of g?



2

6

(B) g(x) $2 \quad 4 \quad 6$

$$8. \qquad \frac{d}{dx} \int_0^{x^2} \sin^2 t \ dt =$$

- $(A) \quad x^2 \sin^2(x^2)$
- (B) $2x\sin^2(x^2)$
- (C) $\sin^2(x^2)$
- (D) $x^2 \cos^2(x^2)$
- (E) $2x\cos^2(x^2)$
- Find the value(s) of $\frac{dy}{dx}$ of $x^2y + y^2 = 5$ at y = 1. 9.

 - (A) $-\frac{3}{2}$ only (B) $-\frac{2}{3}$ only (C) $\frac{2}{3}$ only (D) $\pm \frac{2}{3}$ (E) $\pm \frac{3}{2}$

- Approximate $\int_0^1 \sin^2 x \, dx$ using the Trapezoid Rule with n = 4, to three decimal places.
 - (A) 0.277
 - (B) 0.273
 - (C) 0.555
 - (D) 1.109
 - (E) 2.219

t	W(t)
(days)	(°C)
0	20
3	31
6	28
9	24
12	22
15	21

The temperature, in degrees Celsius (°C), of the water in a pond is a differentiable function W of time t. The table above shows the water temperature as recorded every 3 days over a 15-day period.

- (a) Use data from the table to find an approximation for W'(12). Show the computations that lead to your answer. Indicate units of measure.
- (b) Approximate the average temperature, in degrees Celsius, of the water over the time interval $0 \le t \le 15$ days by using a trapezoidal approximation with subintervals of length $\Delta t = 3$ days.
- (c) A student proposes the function P, given by $P(t) = 20 + 10te^{(-t/3)}$, as a model for the temperature of the water in the pond at time t, where t is measured in days and P(t) is measured in degrees Celsius. Find P'(12). Using appropriate units, explain the meaning of your answer in terms of water temperature.
- (d) Use the function P defined in part (c) to find the average value, in degrees Celsius, of P(t) over the time interval $0 \le t \le 15$ days.