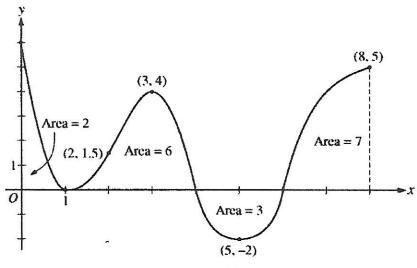

Name:	

AP CALCULUS AB Applications of integrals Practice AP problems

No calculator.

1.


. The continuous function f is defined on the interval $-5 \le x \le 8$. The graph of f, which consists of four line segments, is shown in the figure above. Let g be the function given by $g(x) = 2x + \int_{-2}^{x} f(t) dt$.

(a) Find g(0) and g(-5).

⁽b) Find g'(x) in terms of f(x). For each of g''(4) and g''(-2), find the value or state that it does not exist.

(c) On what intervals, if any, is the graph of g concave down? Give a reason for your answer.

⁽d) The function h is given by $h(x) = g(x^3 + 1)$. Find h'(1). Show the work that leads to your answer.

Graph of f'

The figure above shows the graph of f', the derivative of a twice-differentiable function f, on the closed interval $0 \le x \le 8$. The graph of f' has horizontal tangent lines at x = 1, x = 3, and x = 5. The areas of the regions between the graph of f' and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies f(8) = 4.

- (a) Find all values of x on the open interval 0 < x < 8 for which the function f has a local minimum. Justify your answer.
- (b) Determine the absolute minimum value of f on the closed interval $0 \le x \le 8$. Justify your answer.
- (c) On what open intervals contained in 0 < x < 8 is the graph of f both concave down and increasing? Explain your reasoning.
- (d) The function g is defined by $g(x) = (f(x))^3$. If $f(3) = -\frac{5}{2}$, find the slope of the line tangent to the graph of g at x = 3.

Calculator allowed

3.

t (hours)	0	0.4	0.8	1.2	1.6	2.0	2.4
v(t) (miles per hour)	0	11.8	9.5	17.2	16.3	16.8	20.1

- . Ruth rode her bicycle on a straight trail. She recorded her velocity v(t), in miles per hour, for selected values of t over the interval $0 \le t \le 2.4$ hours, as shown in the table above. For $0 < t \le 2.4$, v(t) > 0.
 - (a) Use the data in the table to approximate Ruth's acceleration at time t = 1.4 hours. Show the computations that lead to your answer. Indicate units of measure.

(b) Using correct units, interpret the meaning of $\int_0^{2.4} v(t) dt$ in the context of the problem. Approximate $\int_0^{2.4} v(t) dt$ using a midpoint Riemann sum with three subintervals of equal length and values from the table.

(c) For $0 \le t \le 2.4$ hours, Ruth's velocity can be modeled by the function g given by $g(t) = \frac{24t + 5\sin(6t)}{t + 0.7}$. According to the model, what was Ruth's average velocity during the time interval $0 \le t \le 2.4$?

(d) According to the model given in part (c), is Ruth's speed increasing or decreasing at time t = 1.3? Give a reason for your answer.