Questions on 8.3c HW?

$$\frac{d}{\sqrt{2}} = \sqrt{2} \cdot \sqrt{2}$$

$$\frac{d}{\sqrt{2}} = -S$$

$$S = 2\sqrt{1-X^2} \cdot \sqrt{2} = \frac{2\sqrt{2}(1-X^2)}{2\sqrt{2}}$$

$$S = \sqrt{2(1-X^2)}$$

$$S =$$

8.4 Integrals as Net Change (8.1 in book)

Example - Linear Motion Revisited

- v(t) = 10 2t is the velocity in m/sec of a particle moving along the x-axis when $0 \le t \le 9$. Use analytic methods to:
- (a) Determine when the particle is moving to the right, to the left, and stopped.

 | Column | Column

- (d) Find the total distance traveled by the particle.

$$\Theta \int_{0}^{9} (10-2t) dt = \left[10t - \frac{k^2}{2} \right]_{0}^{9} = \left[(90-81) - 0 \right] = 9 \text{ m to the right}$$

- (a) When v(t) > 0, the particle is moving right. This occurs when $0 \le t < 5$. When v(t) = 0, the particle is stopped. This occurs when t = 5. When v(t) < 0, the particle is moving left. This
- occurs when $5 < t \le 9$. (P) pos. Financia is moving left. This

 (a) Total. (10-2t | dt |
 (b) displacement = $\int_0^9 v(t) dt |0+2t|$ $= \int_0^9 (10-2t) dt$ $= \left[10t-t^2\right]_0^9$ = 90-81 = 9[50-25] + $\left[(8l-90) (25-50)\right]$ 25+-9+25=41m

During the first 9 seconds of motion, the particle moves 9 m to the right.

- (c) It starts at s(0) = 3, so its position at t = 9 is New position = initial position + displacement =3+9.
- **(d)** Total distance = $\int_0^9 |v(t)| dt = \int_0^9 |10 2t| dt$ $=\int_0^5 (10-2t) dt + \int_5^9 (2t-10) dt$ $= [10t - t^2]_0^5 + [t^2 - 10t]_0^9$ =50-25+81-90-25+50=41 m

Strategy for Modeling with Integrals

- 1. Approximate what you want to find as a Riemann sum of values of a continuous function multiplied by interval lengths. If f(x) is the function and [a,b] the interval, and you partition the interval into subintervals of length Δx , the approximating sums will have the form $\sum f(c_k) \Delta x$ with c_k a point in the kth subinterval.
- 2. Write a definite integral, here $\int_a^b f(x)dx$, to express the limit of these sums as the norms of the partitions go to zero.
- 3. Evaluate the integral numerically or with an antiderivative.

Example

We seek the cummulative effect of the consumption rate for $2 \le t \le 6$.

Step 1: Reimann sum: We partition [2,6] into subintervals of length Δt and let t_k be a time in the kth subinterval. The amount consumed during this interval is approximately $C(t_k)\Delta t$ million bushels. The consumption for $2 \le t \le 6$ is approximately $\sum C(t_k)\Delta t$ million bushels. Step 2: Definite integral: The amount consumed from t = 2 to t = 6 is the limit of these sums as the norms of the partitions go to zero $\int_2^6 C(t)dt = \int_2^6 (2.2 + 1.1^t)dt$ million bushels.

Step 3: Evaluate: Evaluating numerically, we obtain NINT(2.2+1.1^t,t,2,6) \approx 14.692 million bushels.

Homework

8.4 WKS