Questions on 8.2 HW?

QUIZ FRIDAY, MARCHI 10 ON 15 INTEGRALS YOU MUST MEMORIZE

- Questions on 8.2 WKS - WEDINESDAY!

8.3 Volumes of Solids of Revolution about an Axis

Volume of a Solid

The definition of a solid of known integrable cross section area A(x) from x = a to x = b is the integral of A from a to b, $V = \int_a^b A(x) dx$.

How to find volumes by the method of slicing...

- 1. Sketch the solid and a typical cross section.
- 2. Find a formula for A(x). of a
- 3. Find the limits of integration.
- 4. Integrate A(x) to find the volume.

Examples

The region between the curve $f(x) = 2 + x \cos x$ and the x-axis, between -2 and 2, is revolved about the x-axis. Find the volume of the resulting solid. (Calculator)

$$V = \int_{-2}^{2} \pi (2 + x \cos x)^{2} dx = 52.43$$

$$Cross-section:$$

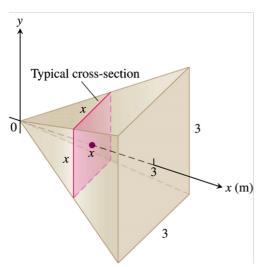
$$Circle \ w/radius$$
of $f(x) = 2 + x \cos x$

and $A(x) = \pi (2+x\cos x)^2$ Find the volume of the solid formed by revolving the curve $f(x) = \sqrt{\sin x}$ on the interval $(0, \pi)$ about the x-axis. (No calculator)

Cross-sections are circles wy
$$\tau = \int_0^{\pi} t \cdot \sin x \, dx = \tau \int_0^{\pi} \sin x \, dx$$
 and area $A(x) = \tau (\sqrt{\sin x})^2$ $\tau (-\cos \tau + \cos 0) = \tau (\sqrt{\sin x})^2$ $\tau (+1+1) = \frac{2\tau}{2\tau}$

Example

A pyramid 3 m high has congruent triangular sides and a square base that is 3 m on each side. Each cross section of the pyramid parallel to the base is a square. Find the volume of the pyramid.



1. Sketch: Draw the pyramid with its vertex at the origin and its altitude along the interval $0 \le x \le 3$. Sketch a typical cross section at a point x between 0 and 3.

- 2. Find a formula for A(x): The cross section at x is a square x meters on a side, so $A(x) = x^2$.
- 3. Find the limits of integration: The square goes from x = 0 to x = 3.
- 4. Integrate to find the volume:

$$V = \int_{0}^{3} A(x) dx$$

$$= \int_{0}^{3} x^{2} dx$$

$$= \frac{x^{3}}{3} \Big]_{0}^{3}$$

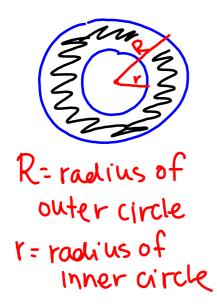
$$= 9 \text{ m}^{3}$$

$$V = \frac{1}{3} \cdot (3 \times 3) \times 3$$

$$V = \frac{1}{3} \cdot 27$$

$$V = 9 \text{ m}^{3}$$

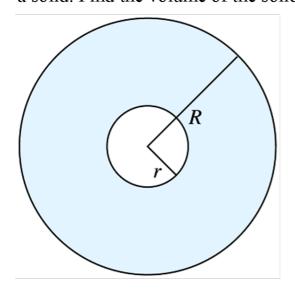
Washers



area of washers: area of outer 0 - area of mer 0

Example

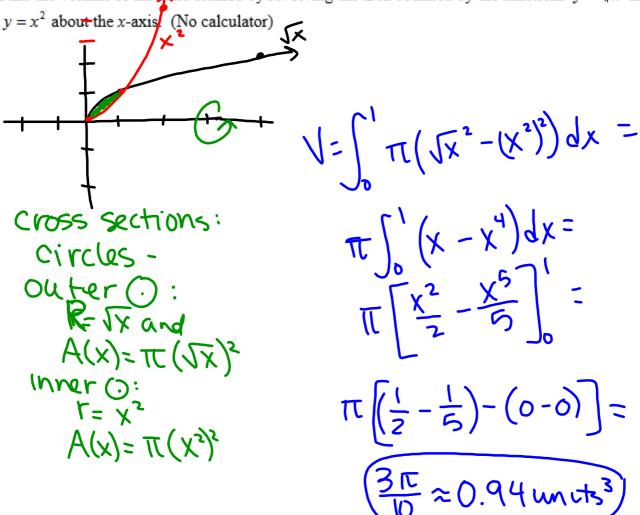
The region between the graph of $f(x) = 2 + x \cos x$ and the x-axis over the interval [-2,2] is revolved about the x-axis to generate a solid. Find the volume of the solid.



Revolving the region about the *x*-axis generates a vase-shaped solid. The cross section at a typical point *x* is circular, with radius equal to f(x). Its area is $A(x) = \pi (f(x))^2$. The volume of the solid is $V = \int_{-2}^{2} A(x) dx$ $= \text{NINT}(\pi (2 + x \cos x)^2, x, -2, 2)$ $\approx 52.43 \text{ units cubed.}$

Examples

Find the volume of the solid formed by revolving the area bounded by the functions $y = \sqrt{x}$ and



Find the volume of the solid formed by revolving the region bounded by the curves $y = 2x^2$, x = 2, and y = 0 about the y-axis. (No calculator)

Homework

8.3a: pg.411 #7-10