Questions on Lesson 6.1?

No quiz today, but work on finding the average rate of change for the following function, given the interval below.

(1, 2)

$$\frac{6-0}{2-1}=6$$

The Great Polynomial Divide

6.2

Polynomial Division

pg.433-434 in your book

The previous function-building lessons showed how the factors of a polynomial determine its key characteristics. From the factors, you can determine the type and location of a polynomial's zeros. Algebraic reasoning often allows you to reverse processes and work backwards. Specifically in this problem, you will determine the factors from one or more zeros of a polynomial from a graph.

1. Analyze the graph of the function $h(x) = x^3 + x^2 + 3x + 3$.

Recall the habit of mind comparing polynomials to real numbers. What does it mean to be a factor of a real number?

a. Describe the number and types of zeros of h(x).

3 zeros; I real #; 2 imaginary

b. Write the factor of h(x) that corresponds to the zero at x = -1.

c. What does it mean to be a factor of $h(x) = x^3 + x^2 + 3x + 3$?

When we divide h(x) by the factor, the remainder is O.

d. How can you write any zero, r, of a function as a factor?

pg.437 in your book.

The Fundamental Theorem of Algebra states that every polynomial equation of degree n must have n roots. This means that every polynomial can be written as the product of n factors of the form (ax + b). For example, $2x^2 - 3x - 9 = (2x + 3)(x - 3)$.

You know that a factor of an integer divides into that integer with a remainder of zero. This process can also help determine other factors. For example, knowing 5 is a factor of 115, you can determine that 23 is also a factor since $\frac{115}{5} = 23$. In the same manner, factors of polynomials also divide into a polynomial without a remainder. Recall that $a \div b$ is $\frac{a}{b}$,

Polynomial long division is an algorithm for dividing one polynomial by another of equal or lesser degree.

The process is similar to integer long division.

where $b \neq 0$.

Notice in
the dividend of the
polynomial example, there is a
gap in the degrees of the
terms; every power must have a
placeholder. The polynomial $8x^3 - 12x - 7$ does not have
an x^2 term.

	3									
	3	Integer Long Division	Polynomial Long Division	Description						
	3	4027 ÷ 12	$(8x^3 - 12x - 7) \div (2x + 3)$							
F	3	or <u>4027</u> 12	$\frac{8x^3 - 12x - 7}{2x + 3}$							
Ħ	3	335 QX	N - D H	A. Rewrite the dividend so that each						
Ħ	3	12 4027 36	$2x + 3 + 3x^3 + 0x^2 - 12x - 7$	power is represented. Insert $0x^2$. B. Divide $\frac{8x^3}{2x} = 4x^2$.						
	3	42 36	$\frac{-(8x^3 + 12x^2)}{(-12x^2 - 12x)}$	C. Multiply $4x^2(2x + 3)$, and then subtract.						
=	3	67 -60	$\frac{-(-12x^2-18x)}{6x-7}$	D. Bring down – 12x. E. Divide $\frac{-12x^2}{2x} = -6x$.						
=	3	⑦ Remainder	Remainder 16	F. Multiply $-6x(2x + 3)$, and then						
	3			subtract. G. Bring down -7.						
	3			H. Divide $\frac{6x}{2x} = 3$. I. Multiply $3(2x + 3)$, and then						
Ŧ	3	4027	8v ³ _ 10v _ 7	subtract.						
=	3	$\frac{4027}{12}$ = 335 R 7	$\frac{8x^3 - 12x - 7}{2x + 3} = $ $4x^2 - 6x + 3 R - 16$	Rewrite						
Ŧ	3	4027 = (12)(335) + 7	$8x^3 - 12x - 7 =$ $(2x + 3)(4x^2 - 6x + 3) - 16$	Check						
Ħ	3		(En 1 0)(Th On 1 0) 10							

pg.438 in your book.

- Analyze the worked example that shows integer long division and polynomial long division.
 - a. In what ways are the integer and polynomial long division algorithms similar?

To determine another factor of $x^3 + x^2 + 3x + 3$ in Problem I, you completed a table, divided output values, and then determined the algebraic expression of the result.

Polynomial Long Division is a more efficient way to calculate.

b. Is 2x + 3 a factor of $f(x) = 8x^3 - 12x - 7$? Explain your reasoning.

No, because we did not get a remainder of O.

2. Determine the quotient for each. Show all of your work.

pg.441 in your book.

- Calculate the quotient using long division. Then write the dividend as the product of the divisor and the quotient plus the remainder.
 - a. $f(x) = x^2 1$ g(x) = x - 1Calculate $\frac{f(x)}{g(x)}$.

Don't forget every power in the dividend must have a placeholder.

b.
$$f(x) = x^3 - 1$$

 $g(x) = x - 1$
Calculate $\frac{f(x)}{g(x)}$.

pg.443 in your book.

Although dividing polynomials through long division is analogous to integer long division, it can still be inefficient and time consuming. **Synthetic division** is a shortcut method for dividing a polynomial by a linear factor of the form (x - r). This method requires fewer calculations and less writing by representing the polynomial and the linear factor as a set of numeric values. After the values are processed, you can then use the numeric outputs to construct the quotient and the remainder.

pg.444 in your book.

To use synthetic division to divide a polynomial $ax^2 + bx + c$ by a linear factor x - r, follow this pattern.

pg.445-6 in your book.

- 2. Two examples of synthetic division are provided. Perform the steps outlined for each problem:
 - i. Write the dividend.
 - ii. Write the divisor.
 - iii. Write the quotient.
 - iv. Write the dividend as the product of the divisor and the quotient plus the remainder.

- i.
- ii.
- iii.
- iv.
- 3. Calculate each quotient using synthetic division. Then write the dividend as the product of the divisor and the quotient plus the remainder.

a.
$$g(x) = x^3 + 1$$

$$r(x)=x+1$$

$$r(x) = x + 1$$

Calculate $\frac{g(x)}{r(x)}$.

not in your book.

1. The given table of values represents the function $f(x) = x^3 + 9x^2 + 14x - 24$.

х	-2	-1	0	1	2
f(x)	-24	-30	-24	0	48

- a. Determine one of the factors of f(x) without using a calculator. Explain your reasoning.
- **b.** Completely factor f(x) without using a calculator.
- **c.** Determine all of the zeros of f(x) without using a calculator.

2. Determine whether 2x - 4 is a factor of $m(x) = 2x^4 - 8x^2 + 4$.

not in your book.

- 3. The Polynomial Pool Company offers 10 different pool designs numbered 1 through 10. Each pool is in the shape of a rectangular prism. The volume of water in Pool Design x, can be determined using the function $V(x) = \ell(x) \cdot w(x) \cdot d(x) = 2x^3 + 18x^2 + 46x + 30$, where $\ell(x)$, $\ell(x)$, and $\ell(x)$ represent the length, width, and depth of the pool in feet.
 - a. Determine the expressions for the functions w(x) and d(x) if $\ell(x) = 2x + 2$ and the width of each pool is greater than the depth. Do not use a calculator.

b. Determine the length, width, and depth of Pool Design 9.

4. Determine whether 3x + 3 is a factor of $p(x) = 3x^4 + 3x^3 - 6x^2 - 6x$.

Homework Finish Lesson 6.2