\*\*Friday, January 13 is the last day Ms. Hansen will accept any late/missing/extra credit work for 2nd quarter\*\*

-->This includes any test/quiz make ups.

### Questions on 6.1 HW?



A = 11.55(12) f(x) = sun x,  $0 \le x \le \pi$ 

 $A = \frac{\pi}{4}(0.38 + 0.92 + 0.92 + 0.38)$  A = 2.278

 $\Delta X = \frac{T}{4}$   $\Delta X = \frac{T}{4}$   $X = \frac{T}{4$ 

# 6.2 Definite Integrals

Sigma Notation

$$\sum_{k=1}^{n}a_k=a_1+a_2+a_3+\ldots+a_{n-1}+a_n$$
 first 3+5+7+9+11 term  $a_1$   $a_2$   $a_3$   $a_4$   $a_5$  it of Reimann

Sums (FYI - do not copy down)

Let f be a function defined on a closed interval [a,b]. For any partition P of [a,b], let the numbers  $c_k$  be chosen arbitrarily in the subinterval  $[x_{k-1},x_k]$ .

If there exists a number I such that  $\lim_{\|P\|\to 0} \sum_{i=1}^{n} f(c_k) \Delta x_k = I$ 

no matter how P and the  $c_k$ 's are chosen, then f is **integrable** on [a,b] and I is the **definite integral** of f over [a,b].

## The Existence of Definite Integrals

All continuous functions are integrable. That is, if a function f is continuous on an interval [a,b], then its definite integral over [a,b] exists.

# The Definite Integral of a Continuous Function on [a,b]

Let f be continuous on [a,b], and let [a,b] be partitioned into n subintervals of equal length  $\Delta x = (b-a)/n$ . Then the definite integral of f over [a,b] is given by  $\lim_{n\to\infty}\sum_{k=1}^n f(c_k)\Delta x$ , where each  $c_k$  is chosen arbitrarily in the  $k^{\text{th}}$  subinterval.

The Definite Integral (Common Notation)



## Example

The interval [-2, 4] is partitioned into n subintervals of equal length  $\Delta x = 6 / n$ . Let  $m_k$  denote the midpoint of the  $k^{th}$  subinterval. Express the limit

$$\lim_{n \to \infty} \sum_{k=1}^{n} (3(m_k)^2 - 2m_k + 5) \Delta x \text{ as an integral.}$$

$$\lim_{n \to \infty} \sum_{k=1}^{n} (3(m_k)^2 - 2m_k + 5) \Delta x = \int_{-2}^{4} (3x^2 - 2x + 5) dx$$

## Answer

$$\lim_{n\to\infty} \sum_{k=1}^{n} \left(3(m_k)^2 - 2m_k + 5\right) \Delta x = \int_{-2}^{4} \left(3x^2 - 2x + 5\right) dx$$

## Area Under a Curve (as a Definite Integral)

If y = f(x) is nonnegative and integrable over a closed interval [a,b], then the area under the curve y = f(x) from a to b is the **integral** of f from a to b,  $A = \int_a^b f(x) dx$ .

#### Area

Area = 
$$-\int_a^b f(x)dx$$
 when  $f(x) \le 0$ .

Area =  $-\int_a^b f(x)dx$  when  $f(x) \le 0$ .

A positive of positive  $\int_a^b f(x)dx = (\text{area above the } x\text{-axis}) - (\text{area below the } x\text{-axis})$ .

\*\*If an integrable function y = f(x) has both positive and negative values on an interval [a,b], then the Riemann sums for f on [a,b] add areas of rectangles that lie above the x-axis to the negatives of areas of rectangles that lie below the x-axis. The resulting cancellations mean that the limiting value is a number whose mangitude is less than the total area between the curve and the x-axis. The value of the integral is the area above the x-axis minus the area below.

## The Integral of a Constant

If f(x) = c, where c is a constant, on the interval [a, b], then  $\int_{a}^{b} f(x)dx = \int_{a}^{b} cdx = c(b-a)$ 





Example using NINT 
$$\int_{a}^{b} f(x) dx = NINT(f(x), a, b)$$

Evaluate numerically.  $\int_{-1}^{2} x \sin x dx$ 

$$\int_{-1}^{2} x \sin x dx$$

 $NINT(x \sin x, x, -1, 2) \approx 2.04$ 

#### EXAMPLES:

#### Together

$$\frac{d}{dx} \int_4^x t^2 dt =$$

$$\frac{d}{dx}\int_{\pi}^{x} \ln t \ dt$$

$$\frac{d}{dx} \int_{1}^{x^{2}} e^{t} dt$$

$$\frac{d}{dx} \int_4^{3x} \cos t \ dt$$

#### On your own

$$\frac{d}{dx} \int_{-1}^{x} \cos t \ dt$$

$$\frac{d}{dx} \int_0^x \frac{1}{1+t^2} dt$$

$$\frac{d}{dx} \int_{4}^{2x} \frac{1}{1+t^2} dt$$

$$\frac{d}{dx} \int_{12}^{3x^2 - x} \sin^2 t \, dt$$

#### Homework

6.2: pg.286-7 #1-12, 13, 14

#### Section 6.2 Exercises

In Exercises 1-6, each  $c_k$  is chosen from the kth subinterval of a regular partition of the indicated interval into n subintervals of length  $\Delta x$ . Express the limit as a definite integral.

1. 
$$\lim_{n\to\infty} \sum_{k=1}^{n} c_k^2 \Delta x$$
, [0, 2]

2. 
$$\lim_{n\to\infty} \sum_{k=1}^{n} (c_k^2 - 3c_k) \Delta x$$
, [-7, 5]

3. 
$$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{c_k} \Delta x$$
, [1, 4]

4. 
$$\lim_{n\to\infty} \sum_{k=1}^{n} \frac{1}{1-c_k} \Delta x$$
, [2, 3]

5. 
$$\lim_{n\to\infty} \sum_{k=1}^{n} \sqrt{4-c_k^2} \, \Delta x$$
, [0, 1]

6. 
$$\lim_{n\to\infty} \sum_{k=1}^{n} (\sin^3 c_k) \Delta x$$
,  $[-\pi, \pi]$ 

In Exercises 7-12, evaluate the integral.

7. 
$$\int_{-2}^{1} 5 dx$$

8. 
$$\int_{3}^{7} (-20) dx$$

9. 
$$\int_0^3 (-160) dt$$

10. 
$$\int_{-4}^{-1} \frac{\pi}{2} d\theta$$

11. 
$$\int_{-2.1}^{3.4} 0.5 \, ds$$

12. 
$$\int_{\sqrt{2}}^{\sqrt{18}} \sqrt{2} dr$$

In Exercises 13-22, use the graph of the integrand and areas to evaluate the integral.

13. 
$$\int_{-2}^{4} \left(\frac{x}{2} + 3\right) dx$$

**14.** 
$$\int_{1/2}^{3/2} (-2x + 4) dx$$

15. 
$$\int_{-3}^{3} \sqrt{9 - x^2} \, dx$$

$$16. \int_{-4}^{0} \sqrt{16 - x^2} \, dx$$

17. 
$$\int_{-2}^{1} |x| \ dx$$

18. 
$$\int_{-1}^{1} (1-|x|) dx$$

19. 
$$\int_{-1}^{1} (2 - |x|) dx$$

**20.** 
$$\int_{-1}^{1} (1 + \sqrt{1 - x^2}) dx$$

21. 
$$\int_{\pi}^{2\pi} \theta \ d\theta$$

**22.** 
$$\int_{\sqrt{2}}^{5\sqrt{2}} r \, dr$$