6.2 Definite Integrals - B3.notebook January 11, 2017

**Friday, January 13 is the last day Ms. Hansen will accept
any late/missing/extra credit work for 2nd quarter**

-->This includes any test/quiz make ups.

Questions on 6.1 HW?
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6.2 Definite Integrals
Sigma Notation

¥
Y a,=a +a,+a,+..+a, +a,
k=1

&‘\rTs»r ’c? t5+ ks a+
The Definite In"regr'al "8s G'Lintit of Reimann
Sums (FYT - do not copy down)

Let / be a function defined on a closed interval [a,b]. For any partition P
of [a,b], let the numbers ¢, be chosen arbitrarily in the subinterval [x, ,,x,].

If there exists a number / such that lim z flecHAx, =1

[P0
no matter how P and the ¢, ’s are chosen, then /* is integrable on [a,b] and

[ is the definite integral of /* over [a, b].

The Existence of Definite Integrals

All continuous functions are integrable. That is, if a function f* 1s
continuous on an interval [a,b], then its definite integral over

[a,b] exists. ~/
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The Definite Integral of a Continuous
Function on [a,b]

Let / be continuous on [a, b], and let [a, ] be partitioned into » subintervals
of equal length Ax ‘:O(b —a)/ n. Then the definite integral of / over [a,b] is

- - n - - - -
given by lim E f(c,)Ax, where each ¢, is chosen arbitrarily in the
11— P

k™ subinterval. @

ax
The Definite Integral (Common Notation)
Q%&& G \V\’(&Qmm&

r ‘IT'H.{T -0 \e
o% F\T:\e* egration fun® " Qo \0(}:)(\01\
ntegra| — F(x)dx 7
Si .,
O&\’;qu [Fo. \v\{-QS(q\ of £ from a to b}
of m+ec5|r';1,f0n when you find the value
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Example

The interval [-2, 4] is partitioned into » subintervals of equal length Ax =6/ n.

Let m, denote the midpoint of the k™ subinterval. Express the limit

111nZ( mk —2m, + S)Ax as an integral.

n—>w0

2
Qm L(%(m\ -2m +6\AX '—J_ bx7—2x+5) olx

n=>00 k=l

Answer

hmZ(3(mk) —2my +5x =" (35>~ 2x+5)dy

n—»o0
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Area Under a Curve (as a Definite Integral)

If y = f(x) is nonnegative and integrable over a closed interval [a,b],
then the area under the curve y = f(x) from a to b is the integral

of ffromatob, A= f(x)d.

Area=— [ f(x)dtv when /(x)<0.
ko S poeiR
NROA

_[ f(x)dx = (area above the x-axis)— (area below the x-axis).

**If an integrable functiony = f(x) has both positive and
negative values on an interval [a,b], then the Riemann sums
for f on [a,b] add areas of rectangles that lie above the x-
axis to the negatives of areas of rectangles that lie below
the x-axis. The resulting cancellations mean that the
limiting value is a number whose mangitude is less than the
total area between the curve and the x-axis. The value of
the integral is the area above the x-axis minus the area
below.
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The Integral of a Constant

If f(x) = ¢, where ¢ 1s a constant, on the interval [a, 5], then

J‘: f(x)dx = J‘: cdx =c(b—a)

a b

A= (=c)(b-a) = —Lbcdx

c+
> X (a,c) b, ¢

\/\,_(,;i/ N
Example using NINT Jbg(*)o\)( = NINT (Hx),x,a,D

Evaluate numerically. I_El X sin xdx

NINT(xsinx,x,—1,2)~ 2.04
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EXAMPLES:

On your own
Together

d ex
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Homework
6.2: pg.286-7 #1-12,13,14
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