If you haven't checked off your unit 5 homework or your differentiation review, get those ready to be checked off! We will start unit 6 today!:)

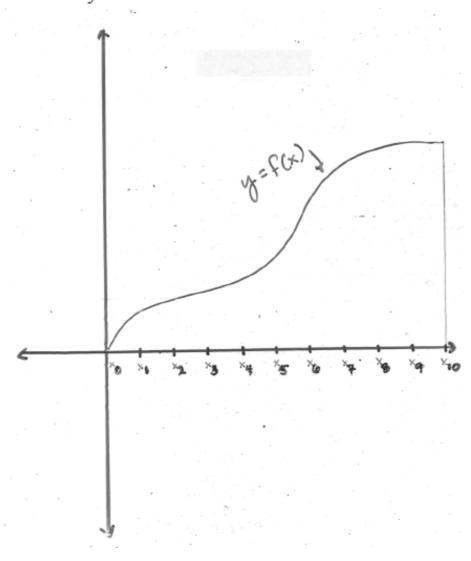
**Also, get your take-home test turned in; do not discuss it with other students!

Friday, January 13 is the last day Ms. Hansen will accept any late/missing/extra credit work for 2nd quarter

-->This includes any test/quiz make ups.

6.1 Estimating with Finite Sums Areas under curves -

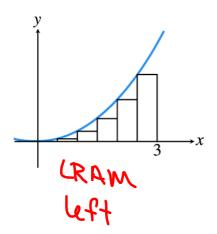
How would you estimate the area under the curve shown below?

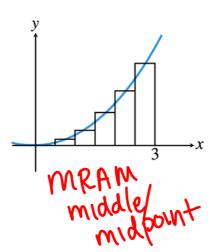


RAM: Rectangular Approximation Method

LRAM, MRAM, and RRAM approximations to the area under the graph of $y = \frac{x^2}{x^2}$ from x=0 $\Delta X = \frac{1}{2}$

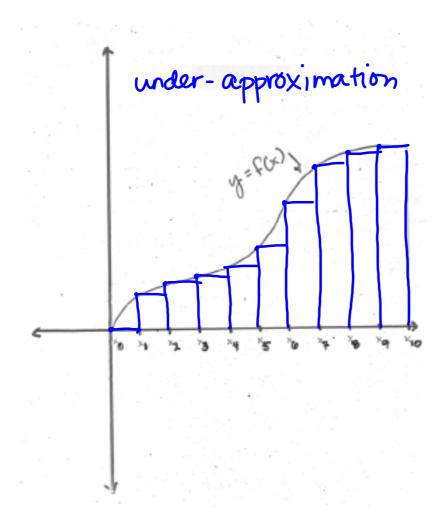
to x=3



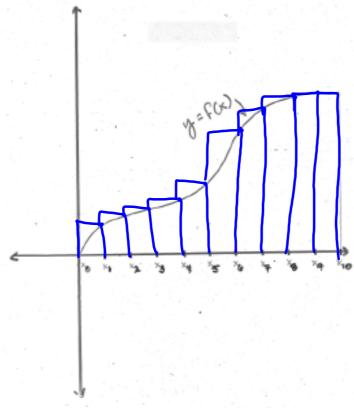




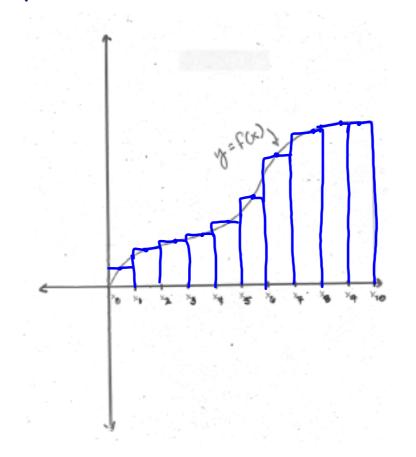
Left Reimann Sum (LRAM)



Right Reimann Sum (RRAM)



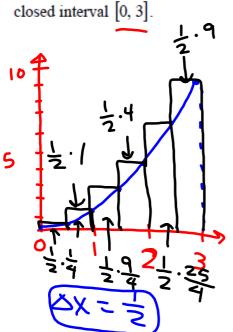
Midpoint Reimann Sum (MRAM)



we but server obblox/mation we sirrented

Examples

1. Use an RRAM with six subintervals to approximate the area under the curve $f(x) = x^2$ on the



$$A = \frac{1}{2} \cdot 9 + \frac{1}{2} \cdot \frac{25}{4} + \frac{1}{2} \cdot 4 + \frac{1}{2} \cdot \frac{9}{4} + \frac{1}{2} \cdot \frac{1}{4}$$

$$A = \frac{1}{2} \left(9 + \frac{25}{4} + 4 + \frac{9}{4} + 1 + \frac{1}{4} \right)$$

$$A = 11.375 \text{ units}^{2}$$

Examples

2. (1999 AP test)

t	R(t)	
(hours)	(gallons per hour)	_
0	9.6	
3	10.4 MIG	boint
-6	10.8	point
9	11.2 mp	Polyt
12	11.4	
- 15	11.3	24
. 18	10.7	
21	10.2	10/1744
24	9.6	R(t) dt
	•	$\sim J_0$

DX = 6

The rate at which water flows out of a pipe, in gallons per hour, is given by a differentiable function R of time t. The table above shows the rate as measured every 3 hours for a 24-hour period.

(a) Use a midpoint Riemann sum with 4 subdivisions of equal length to approximate $\int_0^{24} R(t)dt$. Using correct units, explain the meaning of your answer in terms of water flow.

Interval Height

0-6 | 10.4 (3)

6-12 | 11.2 (9)

12-18 | 11.3 (15)

18-24 | 10.2 (21)

$$A = 6.10.4 + 6.11.2 + 6.11.3 + 10.2$$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$
 $A = 6.10.4 + 6.11.2 + 6.11.3 + 6.10.2$

Homework

6.1: pg.274 #5-6, *9 (LRAM), *10 (RRAM), *11 (LRAM), *12 (MRAM), 16, 17a

*Use 4 subintervals