Find two numbers whose sum is 20 and whose product is as large as possible.

You have been asked to design a one-liter oil can shaped like a right circular cylinder. What dimensions will use the least material?

Questions on HW? If not, work on the

5.5 Linearization and Differentials

Linearization or Linear Approximation

 $y-y_1=m(x-x_1)$

If f is differentiable at x = a, then the equation of the tangent line, L(x) = f(a) + f'(a)(x - a), defines the **linearization of** f at a. The approximation $f(x) \approx L(x)$ is the standard linear approximation of f at a. The point x = a is the center of the approximation.

Find the linearization of $f(x) = \cos x$ at $x = \pi/2$ and use it to approximate $f'(x) = -\sin x$ $f(x) = -\sin(x)$ $f(x) = -\sin(x)$

cos 1.75 without a calculator.

$$f(x)=\cos(\sqrt{172})=0$$
 $a=\sqrt{2}$
 $(\sqrt{172},0)$
 $L(x)=0+-1(x-\frac{\pi}{2})$
 $L(x)=-x+\frac{\pi}{2}$

Answer

Since $f(\pi/2) = \cos(\pi/2) = 0$, the point of tangency is $(\pi/2,0)$. The slope of the tangent line is $f'(\pi/2) = -\sin(\pi/2) = -1$. Thus $L(x) = 0 + (-1)\left(x - \frac{\pi}{2}\right) = -x + \frac{\pi}{2}$.

To approximate $\cos 1.75 = f(1.75) \approx L(1.75) = -1.75 + \frac{\pi}{2}$.

Nov 14-10:50 AM

Differentials

Let y = f(x) be a differentiable function. The **differential** dx is an independent variable. The **differential** dy is dy = f'(x)dx.

Example

Find the differential dy and evaluate dy for the given value of x and dy

$$y = x^{5} + 2x$$
, $x = 1$, $dx = 0.01$
 $f'(x) = 5x^{4} + 2$
 $dy = (5x^{4} + 2) dx$
 $dy = (5 \cdot 1^{4} + 2)(0.01)$
 $dy = 7(0.01)$
 $dy = 0.07$
Answer

$$dy = (5x^4 + 2)dx$$
$$dy = (5+2)(0.01)$$
$$= 0.07$$

Differential Estimate of Change

Let f(x) be differentiable at x = a. The approximate change in the value of f when x changes from a to a + dx is df = f'(a)dx.

Estimating Change with Differentials

Example

The radius of a circle increases from a = 5 m to 5.1 m. Use dA to estimate the increase in the circle's area A. 37^2

$$A = \pi r^{2}$$

$$dA = 2\pi r dr m^{2}$$

$$dA = 2\pi (5)(0.1) m^{2}$$

$$dA = \pi m^{2}$$

Answer

Since $A = \pi r^2$, the estimated increase is

$$dA = 2\pi r dr$$
$$= 2\pi (5)(0.1)$$
$$= \pi \text{ m}^2$$

Examples

1. Use linearization to approximate the value of f(1.2) if $\frac{d}{dx}(f(x)) = -\frac{x}{y}$ and f(x) passes through the point (2, 1).

L(1.2) = 2.6

$$f(2)=1$$

$$f'(2)=\frac{-2}{1}=-2$$

$$L(x)=1-2(x-2)$$

$$L(x)=1-2x+4$$

$$L(x)=-2x+5$$

2. Find the linearization of $f(x) = \cos x$ at $x = \frac{\pi}{2}$. Use it to estimate $f\left(\frac{9\pi}{16}\right)$. From before ... $L(x) = x + \frac{\pi}{2}$. $L\left(\frac{9\pi}{16}\right) = -\frac{\pi}{16}$.

3. If
$$f'(x, y) = \frac{-4x - 2y}{x + 2y}$$
 and $f(-1) = 2$, use linear approximation to estimate $f(-0.9)$.

Examples - AP Problems

1. Let f be a differentiable function, such that f(3) = 2 and f'(3) = 5. If the tangent line to the graph of f is used to find an approximation to a zero of f, that approximation is

- (A) 0.4
- (B) 0.5
- (C) 2.6
- (D) 3.4
- (E) 5.5

2.							
x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
f(x)	-1	-4	-6	-7	-6	-4	-1
f'(x)	-7	-5	-3	0	3	5	7

(a) Write the equation of the tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2).

(b) Is the approximation greater or less than f(1.2)? How do you know?

5. Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope is given by $\frac{3x^2 + 1}{2y}$.

(a) Find the slope of the graph of f at the point where x = 1.

(b) Write an equation for the line tangent to the graph of f at x = 1 and use it to approximate f(1.2).

Homework

5.5 pgs.246-247 #3-42 (X3)