Questions on 5.1/5.2 HW?

5.3 Connecting f' and f" with the Graph of f

First Derivative Test for Local Extrema

The following test applies to a continuous function f(x).

At a critical point c:

- 1. If f' changes sign from positive to negative at c, then f has a local maximum value at c.
- 2. If f' changes sign from negative to positive at c, then f has a local minimum value at c.
- 3. If f' does not change sign at c, then f has no local extreme value at c.

At a left endpoint a:

If f' < 0 (f' > 0) for x > a, then f has a local maximum (minimum) value at a.

At a right endpoint b:

If f' < 0 (f' > 0) for x < b, then f has a local minimum (maximum) value at b.

Example

Use the First Derivative Test to find the local extreme values. Identify

Since f is differentiable for all real numbers, the only critical points are the zeros of f. Solving $f'(x) = 3x^2 - 27 = 0$, we find the zeros to be x = -3, and x = 3.

The zeros partition the *x*-axis into three intervals. Use a sign chart to find the sign on each interval. The First Derivative Test and the sign of f' tells us that there is a local maximum at x = -3 and a local minimum at x = 3. The local maximum value is f(-3) = 57 and the local minimum value is f(3) = -51. The range of f(x) is $(-\infty, \infty)$ so there is no absolute extrema.

Concavity

The graph of a differentiable function y = f(x) is

- (a) concave up on an open interval I if y' is increasing on I.
- (b) concave down on an open interval I if y' is decreasing on I.

Concavity Test

The graph of a twice-differentiable function y = f(x) is

- (a) concave up on an open interval where y'' > 0.
- **(b)** concave down on an open interval where y'' < 0.

Example

Use the Concavity Test to determine the concavity of $f(x) = x^2$ on the interval (2,8).

Since $y'' = \lambda$ is always positive, the graph of $f(x) = x^2$ is concave the graph of $f(x) = x^2$ is concave up on any interval, in particular, on (2,8).

Answer

Since y'' = 2 is always positive, the graph of $y = x^2$ is concave up on any interval. In particular, it is concave up on (2,8).

*Point of Inflection

A point where the graph of a function has a tangent line and where the concavity changes is a **point of inflection**.

Example

Find all points of inflection of the graph of $y = 2e^{-x^2}$.

Answer

Find the second derivative of $y = 2e^{-x^2}$.

$$y' = 2e^{-x^{2}} (-2x) = -4xe^{-x^{2}}$$

$$y'' = -4e^{-x^{2}} + (-4x)e^{-x^{2}} (-2x)$$

$$= -4e^{-x^{2}} + (8x^{2})e^{-x^{2}}$$

$$= 4e^{-x^{2}} (-1 + 2x^{2})$$

The factor $4e^{-x^2}$ is always positive. The factor $(-1+2x^2)$ changes sign

at
$$x = \pm \sqrt{\frac{1}{2}}$$
. The points of inflection are $\left(-\sqrt{\frac{1}{2}}, \frac{2}{\sqrt{e}}\right)$ and $\left(\sqrt{\frac{1}{2}}, \frac{2}{\sqrt{e}}\right)$.

Second Derivative Test for Local Extrema

- 1. If f'(c) = 0 and f''(c) < 0, then f has a local maximum at x = c.
- 2. If f'(c) = 0 and f''(c) > 0, then f has a local minimum at x = c.

Example

Find the local extreme values of $f(x) = x^3 - 6x + 5$.

Answer

$$f'(x) = 3x^2 - 6$$

$$f''(x) = 6x$$
.

Test the critical points $x = \pm \sqrt{2}$.

$$f''(-\sqrt{2}) = -6\sqrt{2} < 0 \implies f$$
 has a local maximum at $x = -\sqrt{2}$ and

$$f''(\sqrt{2}) = 6\sqrt{2} > 0 \implies f$$
 has a local minimum at $x = \sqrt{2}$.

Learning about Functions from Derivatives

Examples

Use the graphs below to answer each of the following questions:

- 1. On which intervals is the function concave up?
- 2. On which intervals is the function concave down?
- 3. On which intervals does the function have no concavity?
- 4. What are the points of inflection of the function?

A.

В.

C.

Homework

5.3 pgs.219-220 #1-11odd, 15-30 (X3)