## Questions on 3.7 HW?

Look over pgs.32-33 and finish those questions up.



For each, one factor of a cubic function is given. Do your best to find the remaining factors and then use this information to determine all roots of the function and sketch a graph.



7. Function: 
$$f(x) = x^3 - x^2 + 4x - 4$$
 Factor:  $(x - 2i)$  Roots of function:  $(x = 2i) - 2i$ 

Roots of function:  $(x = 2i) - 2i$ 

Roots of function:  $(x = 2i) - 2i$ 

Punction:  $f(x) = x^3 - 3x - 9$  Factor:  $(x - 3)$  Roots of function:

9. Find all linear factors and graph:  $f(x) = x^4 - 16$  Roots of function:  $(x^2 + 4)(x^2 - 4)$ 
 $(x + 2i)(x - 2i)(x + 2)(x - 2)$ 

Part II: Given the roots, find the factors and write the polynomial equation in standard form.

10. Roots: 3, -4, and 0 
$$\rightarrow x(x-3)(x+4)$$
  
 $(x^2-3x)(x+4) = x^3+4x^2-3x^2-12x$   
 $= x^3+x^2-12x$ 

11. Roots: 
$$5, 2i, -2i$$

$$(x-5)(x^2+2ix-2ix-4i^2) = (x-5)(x^2+4) = (x-5)(x^2+4) = (x^3+4x-5x^2-20) = (x^3-5x^2+4x-20)$$
12. Roots:  $\sqrt{3}, -\sqrt{3}, -2$ 

$$(x-\sqrt{3})(x+\sqrt{3})(x+2)$$

$$(x^2+x\sqrt{3}-x\sqrt{3}-3)(x+2)$$

$$(x^2+x\sqrt{3}-x\sqrt{3}-3)(x+2)$$

$$(x^2-3)(x+2) = x^3+2x^2-3x-1$$
13. Find the factored form of the cubic function with roots 2, 3i and  $\frac{-3}{2}$  in  $(x-2)(x^2+3xi-3xi-9i^2)$ 

$$(x-2)(x^2+3xi-3xi-9i^2)$$

$$(x-2)(x^2+9)$$

$$x^3+9x-2x^2-18$$

14. Conclusion: What have you learned about polynomial functions as a result of this task?

## 3.8 I Know, What do you know?

A Practice Understanding Task

Use the information provided to graph and write out the polynomial function in factored form.



http://www.flickr.com/photos/chrisbrenschm

|   | Degree<br>of poly | Given roots<br>(you may have<br>to determine | Leading<br>coefficient | Equation (in factored and standard form): |
|---|-------------------|----------------------------------------------|------------------------|-------------------------------------------|
|   |                   | others):                                     |                        |                                           |
| 1 | 3                 | -2, 1, and 1                                 | -2                     | 2(x+2)(x-1), =                            |
| 2 | 4                 | 2+i,4,0                                      | 1 X                    | (x-4)(x+2+i)(x+2-i)                       |
| 3 | 2                 | $\sqrt{2}$                                   | -1 -                   | $(x-\sqrt{2})(x+\sqrt{2})$                |







If I know... What do you know? For each problem, what I know about a function is given... your job is to complete the table of information with what you know.

4. Function:

$$f(x) = 2(x-1)(x+3)^2$$

End behavior:

as 
$$x \to -\infty$$
,  $f(x) \to$ \_\_\_\_  
as  $x \to \infty$ ,  $f(x) \to$ \_\_\_\_

Roots (with multiplicity):

Value of leading co-efficient:

Domain:

Range: All Real numbers

Graph:



5. Function:

End behavior:

as 
$$x \to -\infty$$
,  $f(x) \to \infty$   
as  $x \to \infty$ ,  $f(x) \to \underline{\hspace{1cm}}$ 

Roots (with multiplicity):

(3,0) m: 1; (-1,0) m: 2 (0,0) m: 2

Value of leading co-efficient: -1

Domain:

Range:

Graph:



6. Function:

End behavior:

as 
$$x \to -\infty$$
,  $f(x) \to$ \_\_\_\_  
as  $x \to \infty$ ,  $f(x) \to$ \_\_\_\_

Roots (with multiplicity):

Value of leading co-efficient: 1

Domain:

Range:

**Other:** f(-2) = 0



Without using technology, sketch the graph of the polynomial function described. The term "imaginary roots" means complex zeros.

- 7. A cubic function with a leading coefficient of -2, with two negative zeros and one positive.
- 8. A quartic function with a leading coefficient of 1, with two negative zeros and one positive double zero.
- 9. A cubic function with a leading coefficient of -3, with an imaginary root and one positive double root.
- A quartic function with a leading coefficient of -2, with two negative zeros and one positive double root.

Find all factors and sketch the graph of the polynomial functions.

11. 
$$f(x) = x^3 - x^2$$

12. 
$$f(x) = x^4 - x^2$$

13. 
$$f(x) = x^3 - 2x$$

$$14. f(x) = x^3 - x^2 + 9x - 9$$

## Homework

3.7 "Ready, Set, Go"