Questions on 3.7 HW?

Look over pgs.32-33 and finish those questions up.

3.7 Graphing all Poly's

A Solidify Understanding Task

Part I: Connecting the number system to polynomials.

1. Write everything you know about the following polynomial:

http://www.flickr.com/photos/cu2nite/34778886

2. In case this was not part of what you wrote in question 1, use function notation to highlight values of importance for this function. (For example: f(0) = 6)

3. The graph above gives us quite a bit of information to assist in writing the equation. What if instead you have a polynomial function written out in standard form and are given one factor, how could you determine the graph of the function?

 $\begin{array}{c} \alpha x^2 + b x + C \\ \alpha z \cdot (x)(x) \end{array}$ For each, one factor of a cubic function is given. Do your best to find the remaining factors and then use this information to determine all roots of the function and sketch a graph.

4. Function:
$$f(x) = x^3 + 3x^2 - 4x - 12$$
 Factor: $(x + 3)$ Roots of function: $x = -3, -2, 2$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 5x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x + 3x + 6)(x - 2)$$

$$(x^2 + 2x$$

5. Function:
$$f(x) = x^3 + 6x^2 + 11x + 6$$
 Factor: $(x + 1)$ Fact

7. Function:
$$f(x) = x^3 - x^2 + 4x - 4$$
 Factor: $(x - 2i)$ Roots of function: $(x-2i)(x+2i)(x-1)$

8. Function:
$$f(x) = x^3 - 3x^2 - 3x - 9$$
 Factor: $(x - 3)$ Roots of function

9. Find all linear factors and graph:
$$f(x) = x^4 - 16$$

$$(\chi^2 - 4)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi + 2)(\chi^2 + 4) = \chi^2 + 4 = 0 \text{ Roots of function:}$$

$$(\chi + 2)(\chi - 2)(\chi + 2)(\chi + 2)(\chi - 2)(\chi + 2)(\chi + 2)(\chi - 2)(\chi - 2)(\chi + 2)(\chi - 2$$

Part II: Given the roots, find the factors and write the polynomial equation in standard form.

10. Roots:
$$\frac{3}{4}$$
, and 0
$$x(x-3)(x+4) = (x^2-3x)(x+4)$$

$$= x^3+4x^2-3x^2-17x$$

$$= x^3+x^2-12x$$
11. Roots: $\frac{5}{2}$

$$(x-2i)(x+2i) = (x^2-2ix-5x+10i)(x+2i)$$

$$= x^3+2x^2i-2xx^2-4i^2x-5x^2-16x$$

$$+10ix+20i^2$$

$$= x^3+4x-5x^2-20$$

$$= x^3-5x^2+4x-20$$

$$= x^3-5x^2+4x-20$$
12. Roots: $\sqrt{3}$, $-\sqrt{3}$ 2

12. Roots:
$$\sqrt{3}$$
, $-\sqrt{3}$ $(\chi - \sqrt{3})(\chi + \sqrt{3})(\chi + 2)^{-1}$ $(\chi^2 + \chi\sqrt{3} - \chi\sqrt{3} - 3)(\chi + 2)$ $(\chi^2 - 3)(\chi + 2)$

13. Find the factored form of the cubic fame for with roots 2, 3i and -3l

$$(x-2)(x+3i)(x-3i)$$

$$(x-2)(x^2-3ix+3ix-9i^2)$$

$$(x-2)(x^2+9)$$

$$x^3+9x-2x^2-18$$

$$x^3-2x^2+9x-18$$

14. Conclusion: What have you learned about polynomial functions as a result of this task?

3.8 I Know, What do you know?

A Practice Understanding Task

Use the information provided to graph and write out the polynomial function in factored form.

http://www.flickr.com/photos/chrisbrensc

	Degree of poly	Given roots (you may have to determine others):	Leading coefficient	Equation (in factored and standard form):	
		otners):			
1	3	-2, 1, and 1	-2	_2 (y	$+2)(x-1)^2$
2	4	2+i,4,0	1	×(~= (1)	(x+(2+i))(x+(2-i)
3	2	$\sqrt{2}$	-1	X(X	
		•	•	- I X	「-V ユ ル メナソン)

If I know... What do you know? For each problem, what I know about a function is given... your job is to complete the table of information with what you know.

4. Function:

$$f(x) = 2(x-1)(x+3)^2$$

End behavior:

$$as \quad x \to -\infty, \qquad f(x) \to \underline{\hspace{1cm}}$$

 $as \quad x \to \infty, \qquad f(x) \to \underline{\hspace{1cm}}$

Roots (with multiplicity):

Value of leading co-efficient:

Domain:

Range: All Real numbers

Graph:

5. Function:

End behavior:

as
$$x \to -\infty$$
, $f(x) \to \infty$
as $x \to \infty$, $f(x) \to \underline{\hspace{1cm}}$

Roots (with multiplicity):

(3,0) m: 1; (-1,0) m: 2 (0,0) m: 2

Value of leading co-efficient: -1

Domain:

Range:

Graph:

6. Function:

End behavior:

as
$$x \to -\infty$$
, $f(x) \to$ ____
as $x \to \infty$, $f(x) \to$ ____

Roots (with multiplicity):

Value of leading co-efficient: 1

Domain:

Range:

Other: f(-2) = 0

Without using technology, sketch the graph of the polynomial function described. The term "imaginary roots" means complex zeros.

- 7. A cubic function with a leading coefficient of -2, with two negative zeros and one positive.
- 8. A quartic function with a leading coefficient of 1, with two negative zeros and one positive double zero.
- 9. A cubic function with a leading coefficient of -3, with an imaginary root and one positive double root.
- A quartic function with a leading coefficient of -2, with two negative zeros and one positive double root.

Find all factors and sketch the graph of the polynomial functions.

11.
$$f(x) = x^3 - x^2$$

12.
$$f(x) = x^4 - x^2$$

13.
$$f(x) = x^3 - 2x$$

$$14. f(x) = x^3 - x^2 + 9x - 9$$

Homework

3.7 "Ready, Set, Go"