Starter

1. Find the midpoint M of the line segment joining the points C = (-1, 2) and D = (7, -6).

$$\left(\frac{-1+7}{2},\frac{2+6}{2}\right) \rightarrow \left(3,-2\right)$$

2. In the figure below, $n \parallel m$. Find the values of y and z.

5. The quadrilaterals ABCD and JKLM are similar. Find the length x of \overline{MJ} .

9. $\ln \triangle KLM$, $\overline{KL} \parallel \overline{NO}$. Given that MK = 36, MN = 21, and MO = 28, find ML.

$$\frac{21}{36} = \frac{328}{21}$$

$$\frac{21}{36(28)} = \frac{21}{21}$$

10. Consider parallelogram *QRST* below.

Use the information given in the figure to find the following:

- **12.** Solve for *x* in the triangle. Round your answer to the nearest tenth.

$$19 \cdot \cos 20 = \frac{x}{19} \cdot 19$$
 $19 \cos 20 = x$

$$17.9 = x$$

3.7 Perfecting My Quads

A Practice Understanding Task

Carlos and Clarita, Tia and Tehani, and their best friend Zac are all discussing their favorite methods for solving quadratic equations of the form $ax^2 + bx + c = 0$. Each student thinks about the related quadratic function $y = ax^2 + bx + c$ as part of his or her strategy.

©2013 www.flickr.com/photos/soldiersmediacenter

Carlos: "I like to make a table of values for x and find the solutions by inspecting the table."

Clarita: "I like to write the equation in factored form, and then use the factors to find the solutions."

Tia: "I like to treat it like a quadratic function that I am trying to put in vertex form by completing the square. I can then use a square root to undo the squared expression."

Tehani: "I also like to treat it like a quadratic function, but I use the quadratic formula to find the solutions."

Zac: "I like to graph the related quadratic function and use my graph to find the solutions."

Demonstrate how each student might solve each of the following quadratic equations.

Solve:	Carlos' Strategy	Zac's Strategy
$x^2 - 2x - 15 = 0$		
		m1 d a
Clarita's Strategy	<u>Tia's Strategy</u>	<u>Tehani's Strategy</u>

Solve:	Carlos' Strategy	Zac's Strategy
$2x^2 + 5x - 12 = 0$		
Clarita's Strategy	<u>Tia's Strategy</u>	Tehani's Strategy

HW: 11-15 on pg 47-48

Carlos' State 1000	Zac's Strategy
pg47shoul	y,= x44x-8
Anready be	x=-5.46,1.41
0016	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Tia's Strategy	Tehani's Strategy
	pg47 should Anready be done

Solve:	Carlos' Strategy	Zac's Strategy
$8x^2 + 2x = 3$		
O= 8 8x2+2x-3=	O	$y_1 = 8x^2 + 2x - 3$ x = -0.75, 0.5
b=2 c=-3		
Clarita's Strategy	<u>Tia's Strategy</u>	$\frac{\text{Tehani's Strategy}}{X = -b \pm \sqrt{b^2 - 4ac}}$
		$\chi = -2 \pm \sqrt{2^2 - 4.8.3}$
		2.8 x2± (4+96
Describe why each strategy work	ks.	16
		$X = -2t\sqrt{100}$
		$X = -2 \pm 10$
	- 7+10	·
	16	$=\frac{1}{2}$ $=\frac{1}{4}$ $=\frac{-3}{4}$
As the students continue to two		- 1 , -3

As the students continue to try out their strategies, they notice that sometimes one strategy works better than another. Explain how you would decide when to use each strategy.