Questions on Worksheet 3-1?

9.
$$f(x) = x + \frac{1}{x} \cdot (1, 2)$$
 $f'(x) = \int_{1}^{1} \int_{$

3.2 Differentiability

A function will not have a derivative at a point P(a, f(a))

where the slopes of the secant lines, $\frac{f(x)-f(a)}{x-a}$

fail to approach a limit as x approaches a.

The next figures illustrate four different instances where this occurs. For example, a function whose graph is otherwise smooth will fail to have a derivative at a point where the graph has:

1. a corner, where the one-sided derivatives differ;

[-3, 3] by [-2, 2]

[-3, 3] by [-2, 2]

2. a cusp, where the slopes of the secant lines approach ∞ from one side and approach $-\infty$ from the other (an extreme case of a corner);

$$f(x)=x^{\frac{2}{3}}$$

3. A vertical tangent, where the slopes of the secant lines approach either ∞ or $-\infty$ from both sides;

[-3, 3] by [-2, 2]

4. a discontinuity (which will cause one or both of the one-sided derivatives to be nonexistent).

$$U(x) = \begin{cases} -1, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

Example:

Show that the function is not differentiable at x=0.

$$f(x) = \begin{cases} x^3, & x \le 0 \\ 4x, & x > 0 \end{cases}$$

$$\frac{(\chi^{2} + 2\chi h + h^{2})(\chi + h) = \chi^{3} + 2\chi^{2}h + \chi h^{2}}{\chi^{2}h + 2\chi h^{2} + h^{3}}$$

$$\frac{\chi^{3} + 3\chi^{2}h + 3\chi h^{2} + h^{3}}{\chi^{3} + 3\chi^{2}h + 3\chi h^{2} + h^{3}}$$

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$$

$$\lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} \frac{(3x^2 +$$

$$3x^2 + 3x(0) + 0^2 = 3x^2$$

Right - handed limit:

$$f'(x) = \lim_{h \to 0} \frac{4(x+h) - 4x}{h} = \lim_{h \to 0} \frac{4x + 4h - 4x}{h}$$

$$= \lim_{h \to 0} \frac{4h}{h} = \frac{4}{h}$$

The right-hand derivative is 4.

The left-hand derivative is 0.

The function is not differentiable at x = 0.

Most of the functions we encounter in calculus are differentiable wherever they are defined, which means they will *not* have corners, cusps, vertical tangent lines or points of discontinuity within their domains. Their graphs will be unbroken and smooth, with a well-defined slope at each point.

Differentiability Implies Local Linearity

A good way to think of differentiable functions is that they are **locally linear**; that is, a function that is differentiable at *a* closely resembles its own tangent line very close to *a*.

In the jargon of graphing calculators, differentiable curves will "straighten out" when we zoom in on them at a point of differentiability.

Derivatives on a Calculator:

Many graphing utilities can approximate derivatives numerically with good accuracy at most points of their domains. For small values of h, the difference quotient

$$\frac{f(a+h)-f(a)}{h}$$

is often a good numerical approximation of f'(a).

However, the same value of h will usually yield a better approximation if we use the symmetric difference quotient

mmetric difference quotient
$$\frac{f(a+h)-f(a-h)}{2h} \to \frac{f(\alpha+0.001)-f(\alpha-0.001)}{2(0.001)}$$
It our graphing calculator uses to calculate NDER $f(a)$ the

which is what our graphing calculator uses to calculate NDER f(a), the numerical derivative of f at a point a. f(2.001) - f(1.99)

The numerical derivative of f as a function is denoted by NDER f(x).

The numerical derivatives we compute in this book will use h=0.001.

Example:

Find the numerical derivative of the function $f(x)=x^2+3$ at the point x=2. Use a calculator with h=0.001.

Using a TI-83 Plus we get

Because of the method used internally by the calculator, you will sometimes get a derivative value at a nondifferentiable point.

This is a case of where you must be "smarter" than the calculator.

Theorem 1: Differentiability Implies Continuity

If f has a derivative at x=a, then f is continuous at x=a.

The converse of Theorem 1 is false. A continuous functions might have a corner, a cusp or a vertical tangent line, and hence not be differentiable at a given point.

Intermediate Value Theorem for Derivatives

Not every function can be a derivative.

If a and b are any two points in an interval on which f is differentiable, then f' takes on every value between f'(a) and f'(b).

Homework

3.2 pg.114 #1-25odds, 39, 48