Questions on 2.2 HW? We will be having a quiz Friday on 2.1 & 2.2.

(33)
$$f(x) = \frac{\tan x}{\sin x}$$

a) VA:
$$x = \pi + k$$
, $k \in \mathbb{Z}$ or $k = ..., -2, -1, 0, 1, ...$

PreCalculus & Limits Review Day

PRECALCULUS

- 1. Consider the following equations in two variables and sketch the graphs of the equations.
- a. x + y = 0

<u>b</u>. x = 5

c. y = -2.8

2. Find the x- and y-intercepts of the following curves.

a.
$$3.7y - 2.1x = 5.5$$

b.
$$y^2 - 2x = 9$$

3. For each of the given lines, determine if the point $\left(-\frac{1}{2}, 3\right)$ lies on the line.

a.
$$2y - 3x = 5$$

b.
$$2.4x + y - 1.8 = 0$$

4. Write an equation of the line that passes through the points (-6, 3) and (1, 2).

- 5. Write the equation of the line that passes through (-6, -2) and is perpendicular to the line 3y = 5x 7.
- 6. Give the domain of each function. Try to figure it out without using your calculator.

a.
$$f(x) = \frac{1}{3x}$$

b.
$$g(t) = \frac{-7}{5t - 2}$$

$$c.$$
 $F(x) = \sqrt{x} - 5$

d.
$$G(x) = 1 + \sqrt{x-2}$$

7. Give the domain and range of $F(t) = 3 - \sqrt{t}$.

8. An object is thrown upward. The graph below represents the object's distance y (in feet) from the ground as a function of time t (in seconds).

a. What are the following values? Describe what they represent. f(0):

f(2.2):

f(4):

- b. Give the approximate value(s) of t at which f(t) = 0.
- c. When does the object reach maximum height? How high is the object at that time?

d. Estimate the time(s) when the object is 150 ft above the ground.

- 9. Consider the function $f(x) = \begin{cases} -2 ; x < 0 \\ 3 ; x = 0 \\ x^2 ; x > 0 \end{cases}$
- a. Sketch the graph of f.

- b. Evaluate f(-1.3)
 - f(0)
 - $f\left(\frac{5}{2}\right)$
 - $f(\sqrt{3})$

10. Simplify

a.
$$\frac{\frac{1}{2x-5} - \frac{7}{8x-20}}{\frac{x}{2x-5}}$$

b.
$$\frac{15 - \frac{2}{x}}{\frac{x}{5} + 4}$$

- 11. Solve the following quadratic equations by factoring.
- a. $64 x^2 = 0$

b. $2x^2 + 3x = 2$

12. Find all the zeros of $x^4 - 1$.

13. Graph $f(x) = 2x^4 - 4x^3 - x^2 + 3x - 4$ and find one of the roots.

- 14. Give the amplitude and period of each of the following:
- a. $y = 3\cos(2x)$

 $b. -\sin\frac{x}{2}$

c. $5\tan(2\pi x)$

15. Evaluate the following without a calculator:

$$\underline{b}. \quad \sin^{-1}\frac{\sqrt{3}}{2}$$

c.
$$\cos^{-1}\frac{1}{\sqrt{2}}$$

$$\underline{\mathbf{d}}. \quad \cos\left(\sin^{-1}\frac{5}{13}\right)$$

e.
$$\sin^{-1}\left(\sin\frac{7\pi}{6}\right)$$

16. Simplify without a calculator:

$$\underline{b}$$
. $\log_3 3^{2x}$

c.
$$\log_2 \frac{1}{8}$$

17. Solve for the variable.

a.
$$e^{3t} = 100$$

$$b. \quad 2^{x+3} = 7^{2x-1}$$

c.
$$\ln(5z-2)=3$$

- 18. The number of bacteria present in a certain culture at time t hours is given by $Q(t) = 2000 e^{0.3t}$. If time t = 0 corresponds to 8:00 A.M. on a certain day,
- a. find the number of bacteria present at noon on the same day.

b. Find when there will be 20,000 bacteria present in the culture.

LIMITS

- If $a \neq 0$, then $\lim_{x \to a} \frac{x^2 a^2}{x^4 a^4}$ is
- (A) $\frac{1}{a^2}$ (B) $\frac{1}{2a^2}$ (C) $\frac{1}{6a^2}$
- (D) 0
- (E) nonexistent

20. Find each of the following limits.

a.
$$\lim_{x \to -3} \left(x^2 + 3x \right)$$

b.
$$\lim_{x \to 5\pi/3} \cos x$$

c.
$$\lim_{x \to 5} \frac{x-5}{x^2-25}$$

d.
$$\lim_{x \to 4} \frac{\sqrt{x+5} - 3}{x-4}$$

e.
$$\lim_{x \to 0} \frac{\sin x}{5x}$$

f.
$$\lim_{x \to 4} \frac{x^2 - 5x + 4}{x^2 - 2x - 8}$$

Homework

Limits Review WKS