2.2 Limits Involving Infinity

REVIEW: Find the following limits.

1.
$$\lim_{x\to 0} \frac{\sin(3x)}{x} = f(0) = \frac{\sin(3\cdot 0)}{0} = \frac{0}{0} \Rightarrow \cos(3x) = 3$$
2. $\lim_{x\to 0} \frac{\sin(5x)}{\sin(4x)} \Rightarrow \operatorname{dyn} \frac{\sin(5x)}{\cos(4x)} = 1.25$

3.
$$\lim_{x\to 0} \frac{1-\cos^2 x}{x} \to \sqrt{\text{graph}} \to \lim_{X\to 0} \frac{1-\cos^2 x}{X} = 0$$

$$|-\cos^2 x = \sin^2 x$$

Questions on 2.1 HW?

Vertical Asymptote

If the values of a function f(x) outgrow all positive bounds as x approaches a finite number a, we say that $\lim_{x\to a} f(x) = \infty$. If the values of f become large and negative, exceeding all negative bounds as x approaches a finite number a, we say that $\lim_{x\to a} f(x) = -\infty$.

The line x=a is a **vertical asymptote** of the graph of a function y=f(x) if either

$$\lim_{x \to a^{+}} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^{-}} f(x) = \pm \infty$$

You try...

Find the vertical asymptotes of the graph of f(x) and describe the behavior of f(x) to the right and left of each vertical asymptote.

$$f(x) = \frac{8}{4-x^2} = \frac{8}{(2-x)(2+x)}$$

The values of the function approach $-\infty$ to the left of x=-2.

The values of the function approach $+\infty$ to the right of x=-2.

The values of the function approach $+\infty$ to the left of x=2.

The values of the function approach $-\infty$ to the right of x=2.

$$\lim_{x \to -2^{-}} \frac{8}{4 - x^{2}} = -\infty \quad \text{and} \quad \lim_{x \to -2^{+}} \frac{8}{4 - x^{2}} = +\infty$$

$$\lim_{x \to 2^{-}} \frac{8}{4 - x^{2}} = +\infty \quad \text{and} \quad \lim_{x \to 2^{+}} \frac{8}{4 - x^{2}} = -\infty$$

So, the vertical asymptotes are x = -2 and x = 2

Limits as $x \to \pm \infty$

The line y=b is a **horizontal asymptote** of the graph of a function y = f(x) if either

You try...
$$\lim_{x\to\infty} f(x)=b$$
 or $\lim_{x\to-\infty} f(x)=b$

$$\lim_{x\to\infty} f(x) = b$$

$$\lim_{x \to -\infty} f(x) = b$$

Use a graph and tables to find (a) $\lim_{x \to \infty} f(x)$ and (b) $\lim_{x \to -\infty} f(x)$.

c) Identify all horizontal asymptotes.

$$f(x) = \frac{x+1}{x}$$

(a)
$$\lim_{x\to\infty} f(x) = 1$$

$$[b]\lim_{x\to\infty} f(x)=1$$

(c) Identify all horizontal asymptotes. y=1

X	W 1		
-150 -100	.99333 .99	1+(x)>	
-50 0	.98 Error	,	
50 100 150	1.02 1.01 1.0067	9	
150 1:0067 (代) Y1目(X+1)/X			

Sandwich Thm Revisited...

The sandwich theorem also holds for limits as $x \to \pm \infty$.

Find $\lim_{x\to\infty} \frac{\cos x}{x}$ graphically and using a table of values.

X	W 1		
-100 100 300 500 700 900 1100	1,0086 1,00862 17E-5 1,0018 1,0012 7,4E-5 8,2E-4		
Y1 目 (cos(X))/X			

The graph and table suggest that the function oscillates about the x-axis

Thus y = 0 is the horizontal asymptote and $\lim_{x \to \infty} \frac{\cos x}{x} = 0$

Properties of Limits as $x \to \pm \infty$

If L, M and k are real numbers and

$$\lim_{x \to \pm \infty} f(x) = L$$
 and $\lim_{x \to \pm \infty} g(x) = M$, then

1. Sum Rule: $\lim_{x \to \pm \infty} (f(x) + g(x)) = L + M$

The limit of the sum of two functions is the sum of their limits.

2. Difference Rule: $\lim_{x \to \pm \infty} (f(x) - g(x)) = L - M$

The limit of the difference of two functions is the difference of their limits

3. Product Rule: $\lim_{x \to \pm \infty} (f(x) \cdot g(x)) = L \cdot M$

The limit of the product of two functions is the product of their limits.

4. Constant Multiple Rule: $\lim_{x \to \pm \infty} (k \cdot f(x)) = k \cdot L$

The limit of a constant times a function is the constant times the limit of the function.

5. Quotient Rule: $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$

The limit of the quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.

6. Power Rule: If r and s are integers, $s \neq 0$, then

$$\lim_{x \to \pm \infty} \left(f(x) \right)^{\frac{r}{s}} = L^{\frac{r}{s}}$$

provided that $L^{\frac{r}{s}}$ is a real number.

The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number.

End Behavior Models

The function g is

- (a) a **right end behavior model** for f if and only if $\lim_{x\to\infty} \frac{f(x)}{g(x)} = 1$.
- (b) a **left end behavior model** for f if and only if $\lim_{x\to -\infty} \frac{f(x)}{g(x)} = 1$. **You try...**

Find an end behavior model for

$$f(x) = \frac{3x^2 - 2x + 5}{4x^2 + 7}$$

Notice that $3x^2$ is an end behavior model for the numerator of f, and $4x^2$ is one for the denominator. This makes

$$\frac{3x^2}{4x^2} = \frac{3}{4}$$
 an end behavior model for f .

In this example, the end behavior model for f, $y = \frac{3}{4}$ is also a horizontal asymptote of the graph of f. We can use the end behavior model of a rational function to identify any horizontal asymptote.

A rational function always has a simple power function as an end behavior model.

End Behavior Models

If one function provides both a left and right end behavior model, it is simply called an **end behavior model**.

In general, $g(x) = a_n x^n$ is an end behavior model for the polynomial function $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0, \ a_n \neq 0$

Overall, all polynomials behave like monomials.

Homework

2.2 pgs.76 #3-45 (X3)