2.1 Rates of Change and Limits

Average Rate of Change:

-Slope
- can find on curves f(x+h) - f(x) $(x+h) - \chi$ $(x+h) - \chi$ $(x+h) + \chi$ $(x+h) + \chi$

An object is dropped from rest from the top of a tall building falls $y = 16t^2$ feet in the first t seconds.

*What is the average speed during the first

4 seconds of fall?
$$\frac{256-0}{4-0} = \frac{256}{4} = 64 (4, 256)$$

Definition of a Limit:

Let c and L be real numbers. The function f has limit L as x approaches c if, given any positive number ε , there is a positive number δ such that for all x,

$$0 < |x - c| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$

We write

$$\lim_{x\to c} f(x) = L$$

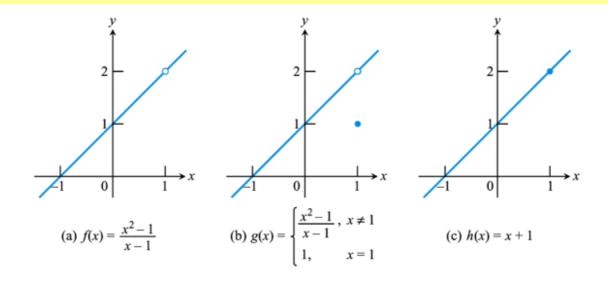
The sentence $\lim_{x\to c} f(x) = L$ is read, "The limit of f of x as x approaches c equals L". The notation means that the values f(x) of the function f approach or equal L as the values of x approach (but do not equal) c.

Examples:

The function f has limit 2 as $x \to 1$ even though f is not defined at 1.

The function g has limit 2 as $x \to 1$ even though $g(1) \neq 2$.

The function h is the only one whose limit as $x \to 1$ equals its value at x=1.



Theorem 1: Properties of Limits-

If L, M, c, and k are real numbers and

$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$, then

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M, \text{ then}$$
1. Sum Rule:
$$\lim_{x \to c} (f(x) + g(x)) = L + M$$

The limit of the sum of two functions is the sum of their limits.

2. DifferenceRule:
$$\lim_{x \to c} (f(x) - g(x)) = L - M$$

The limit of the difference of two functions is the difference of their limits.

3. Product Rule:
$$\lim_{x \to c} (f(x) \cdot g(x)) = L \cdot M$$

The limit of the product of two functions is the product of their limits.

4. Constant Multiple Rule:
$$\lim_{x \to c} (k \cdot f(x)) = k \cdot L$$

The limit of a constant times a function is the constant times the limit of the function.

5. Quotient Rule:
$$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$$

The limit of the quotient of two functions is the quotient of their limits, provided the limit of the denominator is not zero.

6. Power Rule: If r and s are integers,
$$s \neq 0$$
, then

$$\lim_{x \to c} \left(f(x) \right)^{\frac{r}{s}} = L^{\frac{r}{s}}$$

provided that $L^{\frac{r}{s}}$ is a real number.

The limit of a rational power of a function is that power of the limit of the function, provided the latter is a real number.

Other properties of limits:

$$\lim_{x\to c}(k)=k \qquad k \text{ is a constant } \#$$

$$\lim_{x\to c}(x)=c$$

You try...

Use any of the properties of limits to find

$$\lim_{x \to c} (3x^3 + 2x - 9) = \lim_{x \to c} 3x^3 + \lim_{x \to c} 3x - \lim_{x \to c} 9$$

$$= 3c^3 + 2c - 9$$

Answer:

$$\lim_{x \to c} (3x^3 + 2x - 9) = \lim_{x \to c} 3x^3 + \lim_{x \to c} 2x - \lim_{x \to c} 9$$
 sum and difference rules
$$= 3c^3 + 2c - 9$$
 product and multiple rules

Theorem 2-Polynomial and Rational Functions-

1. If $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ is any polynomial function and c is any real number, then

$$\lim_{x \to c} f(x) = f(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0$$

2. If f(x) and g(x) are polynomials and c is any real number, then $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{f(c)}{g(c)}, \text{ provided that } g(c) \neq 0.$

You try...

Use Theorem 2 to find $\lim_{x \to 5} (4x^2 - 2x + 6)$ $\lim_{x \to 5} (4x^2 - 2x + 6) = f(5) = 4(5)^2 - 2(5) + 6 = 96$ $\lim_{x \to 5} (4x^2 - 2x + 6) = 4(5)^2 - 2(5) + 6$ = 4(25) - 10 + 6 = 100 - 10 + 6 = 96

We can also find limits by substitution with many other types of functions.

You try...

Find
$$\lim_{x\to 0} \frac{1+\sin x}{\cos x} = \int (0) = \underbrace{1+\sin 0}_{\text{COSO}}$$

$$= \underbrace{1+0}_{\text{I}} = 1$$
Solve graphically:

The graph of $f(x) = \frac{1 + \sin x}{\cos x}$ suggests that the limit exists and is 1.

Confirm Analytically:

Find
$$\lim_{x \to 0} \frac{1 + \sin x}{\cos x} = \frac{\lim_{x \to 0} (1 + \sin x)}{\lim_{x \to 0} \cos x} = \frac{(1 + \sin 0)}{\cos 0}$$
$$= \frac{1 + 0}{1} = 1$$

Here's another one...

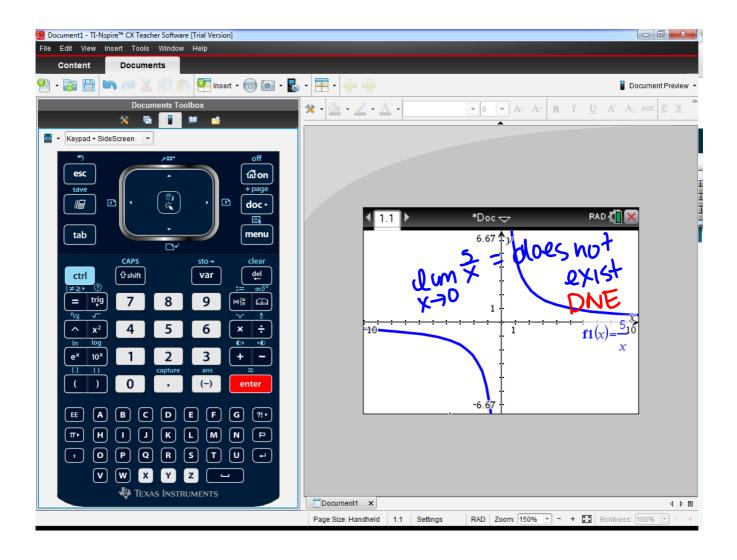
Find
$$\lim_{x\to 0} \frac{5}{x} = f(0) = \frac{5}{0} \cdots$$
? (ook at graph)

Solve graphically: The graph of $f(x) = \frac{5}{x}$ suggests that the limit does not exist.

Confirm Analytically:

We can't use substitution in this example because when x is relaced by 0, the denominator becomes 0 and the function is undefined.

This would suggest that we rely on the graph to see that the limit does not exist.



One-Sided and Two-Sided Limits

Sometimes the values of a function f tend to different limits as x approaches a number c from opposite sides. When this happens, we call the limit of f as x approaches c from the right the right-hand limit of f at c and the limit as x approaches c from the left the left-hand limit.

lun+ (f(x))

right-hand: $\lim_{x\to c^+} f(x)$ The limit of f as x approaches c from the right.

left-hand: $\lim_{x\to c^-} f(x)$ The limit of f as x approaches c from the left.

FYI...

We sometimes call $\lim_{x\to c} f(x)$ the two-sided limit of f at c to distinguish it from the one-sided right-hand and left-hand limits of f at c.

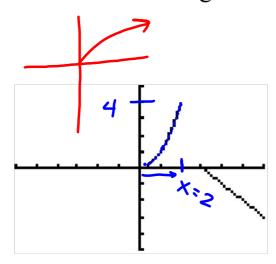
Theorem 3: One-Sided and Two-Sided Limits-

A function f(x) has a limit as x approaches c if and only if the right-hand and left-hand limits at c exist and are equal. In symbols,

$$\lim_{x \to c} f(x) = L \Leftrightarrow \lim_{x \to c^{+}} f(x) = L \text{ and } \lim_{x \to c^{-}} f(x) = L.$$

You try...

Find the following limits from the given graph.



- a. $\lim_{x\to 0^+} f(x) = 0$
- b. $\lim_{x\to 2^+} f(x) =$ Does Not Exist
- c. $\lim_{x \to 2} f(x) = 4$
- d. $\lim_{x\to 2} f(x) =$ Does Not Exist
- $e. \quad \lim_{x \to 3^+} f(x) = 0$

Sandwich Theorem- pg 65 fig 2.7 \$ 2.8

If we cannot find a limit directly, we may be able to find it indirectly with the Sandwich Theorem. The theorem refers to a function f whose values are sandwiched between the values of two other functions, g and h.

If g and h have the same limit as $x \to c$ then f has that limit too.

Here's the theorem:

If $g(x) \le f(x) \le h(x)$ for all $x \ne c$ in some interval about c, and

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L,$$

then

$$\lim_{x\to c} f(x) = L$$

Homework

2.1 pgs.66-67 #9-48 (X3) SKIP 12, do 14 instead