Section 1.1 Lines

DEFINITION Increments

If a particle moves from the point (x_1, y_1) to the point (x_2, y_2) , the increments in its coordinates are

$$\Delta x = \mathbf{x}_2 - \mathbf{x}_1$$
 and $\Delta y = \mathbf{y}_2 - \mathbf{y}_1$

Δx means "delta x" Δy means "delta y" change in x change in y

DEFINITION Slope

Let $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$ be points on a nonvertical line, L. The slope of L is

$$m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Parallel & Perpendicular Lines:

How are the slopes related?

reciprocal slopes.

Point-Slope Equation:

$$y-y_i=m(x-x_i)$$

The equation $y=m(x-x_1)+y_1$ is the point-slope equation of the line through the point (x_1,y_1) with slope m.

Slope-Intercept Equation:

The equation y=mx+b is the slope-intercept equation of the line with slope m and y-intercept b.

General Linear Equation:

The equation Ax+By=C ($A\neq 0$ and $B\neq 0$) is a general linear equation in x and y.

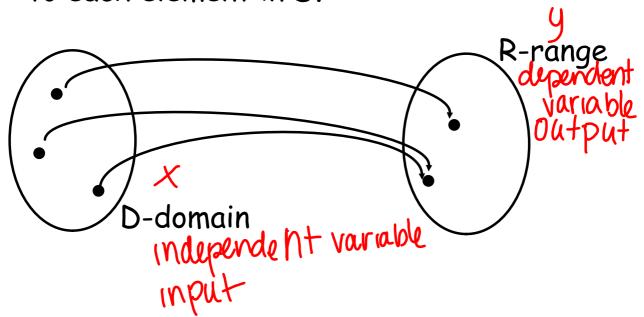
x-intercept:
$$Ax + B \cdot D = C$$

 $Y = 0$
 $Y = 0$

Linear Regression

Scatter Plot-

Regression Analysis-the process of finding a curve to fit data (steps are on pg.8)

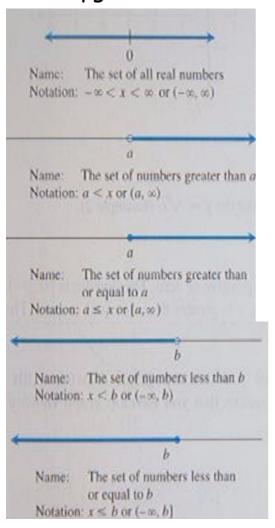

Regression Curve—the curve that fits your data.

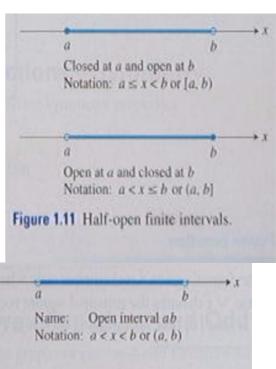
Work on the following (pgs.9-10):

46)

Section 1.2 Functions & Their Graphs

Function: A function from a set D to a set R is a rule that asigns a unique element in R to each element in D.




What else do we call domain and range?

When we define a function y=f(x) with a formula and the domain is not stated explicitly or restricted by context, the domain is assumed to be the largest set of x-values for which the formula gives real y-values--the so called

natural domain.

*Look at pg.13

Name: Open interval abNotation: a < x < b or (a, b) a > xName: Closed interval abNotation: $a \le x \le b$ or [a, b]Figure 1.10 Open and closed finite intervals.

The endpoints of an interval make up the interval's **boundary** and are called **boundary points**. The remaining points make up the interval's **interior** and are called **interior points**. Closed intervals contain their boundary points. Open intervals contain no boundary points. Every point of an open interval is an interior point of the interval.

 $t(x) = -x_3$ $t(-x) = (-x)_3$ $t(x) = x_3$

ODD

pg.14 has some helpful graph viewing skills

Even & Odd Functions

DEFINITIONS Even Function, Odd Function

$$f(x) = x^{2}$$
A function $y = f(x)$ is an
$$f(-x) = (-x)^{2}$$
even function of x if $f(-x) = f(x)$,
$$f(-x) = x^{2}$$
odd function of x if $f(-x) = -f(x)$,
$$f(-x) = x^{2}$$

$$f(-x) = x^{2}$$
odd function of x if $f(-x) = -f(x)$,
$$f(-x) = f(x)$$

The graph of an even function is symmetric about the y-axis. Since f(-x) = f(x), a point (x, y) lies on the graph if and only if the point (-x, y) lies on the graph (Figure 1.15a).

The graph of an odd function is symmetric about the origin. Since f(-x) = -f(x), a point (x, y) lies on the graph if and only if the point (-x, -y) lies on the graph (Figure 1.15b). $+(x) = x^3 + x^2$

$$f(x) = X^3 + X^2$$

 $f(-x) = -X^3 + (-x)^2$
 $f(-x) = -X^3 + X^2$
 $f(-x) = -X^3 + X^2$

Absolute Value Function

The absolute value function y = |x| is defined piecewise by the formula

$$|x| = \begin{cases} -x, & x < 0 \\ x, & x \ge 0. \end{cases}$$

The function is even, and its graph (Figure 1.19) is symmetric about the y-axis.

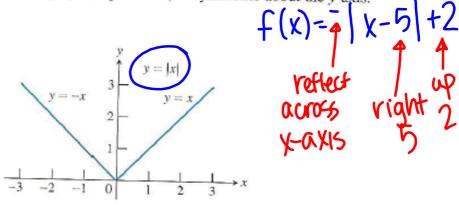


Figure 1.19 The absolute value function has domain $(-\infty, \infty)$ and range $[0, \infty)$

Composite Functions

Suppose that some of the outputs of a function g can be used as inputs of a function f. We can then link g and f to form a new function whose inputs x are inputs of g and whose outputs are the numbers f(g(x)), as in Figure 1.21. We say that the function f(g(x))

(read "f of g of x") is the **composite of g and f**. It is made by composing g and f in the order of first g, then f. The usual "stand-alone" notation for this composite is $f \circ g$, whi is read as "f of g." Thus, the value of $f \circ g$ at x is $(f \circ g)(x) = f(g(x))$.

Work on the following on page 19 with your table:

#8, 12, 14, 24, 26, 28, 32

Homework

1.1 pg.9-10 #1-37EOO

1.2 pg.19-20 #1-49EOO